X1+X2+X3+...+Xn=1 X1,X2,X3,...,Xn 为n个非负实数,n>=4求X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1的最大值.我觉得答案应该是1/4,最好不要用定理那些东西至今还是没正确答案!

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 05:27:54
X1+X2+X3+...+Xn=1 X1,X2,X3,...,Xn 为n个非负实数,n>=4求X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1的最大值.我觉得答案应该是1/4,最好不要用定理那些东西至今还是没正确答案!
xX[O#+ۍ=$yq;ȻHXL2Hs3cY0`|Ǥ/O:ݶo!^,cN:UEDcj0^CP0k/*{`D>ԍƹsph_ڡuQm¼Z`}u 6A\b#t T0ot&퐙ٰϲcUIF4vlձ jZEg7E|o֒}:1Odžh?O%IxP ~LCI#jF~nn L:=Lw'ձ@FI)?sʤz?XiU-D3 4e-^E&G]FKFJ=}kswF)Z WN&6QKa\hj$3څ$;9Nh#4 p`DRc?b{|}o6{wauB&BehvF`ҷV|q%~\ɰ+PHt6c C=ZlBev\ .)CaG NudEdv6-'FIճ(kl\^"FMc"$PubXf.[l,9vOy AL'ԌC hE5صGA@PqRq%_Ss> %q;^.hW Fcad8kEf2 {'60h^ztcS, b EDo2W@7grHm,yK;Kǃ+#$EvSlص< LvK1I E{q-f>Qj '.%$& Z4ā񙨴v'Қ퀸57pJs*ab >^#`Q{2sW؊bg@+Fgc1&h1KQӴ83v h3HQ E7cՒbu m"mj[,6We ]P^)6:7<g #7vۡx(#D+$6~z@\*ojz6脼r܍UiB 6{ <QG/3|fyT~ڨ|}al~2~·Y\VS=EXHt ֭wG4Hޣmh:{"scjgu Y %3dd=5Tma)!)5lj'z]?eN<0jwd}LYgPX5>:{_F+js ",l ߃Ch܁#ܫl|K5U#^P-Vk7w \T҄ClZCV1=O))@;%s}gB'Ɛrg D;Gw ,Q,[3J*5ʑtv*tH{δtUVKP̀zecٲRbezs<@ v} _b2th,{|vO|o>aѤ_s>9Nldv6%=AcxL 21gYk6%c & dք ft9:,4/0CwO.Z|\7+ ?ύ85g} E _ 52.*/O0Nv׬{OtJgqw[0]*psq@./TPE-U)> +*g

X1+X2+X3+...+Xn=1 X1,X2,X3,...,Xn 为n个非负实数,n>=4求X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1的最大值.我觉得答案应该是1/4,最好不要用定理那些东西至今还是没正确答案!
X1+X2+X3+...+Xn=1
X1,X2,X3,...,Xn 为n个非负实数,n>=4
求X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1的最大值.
我觉得答案应该是1/4,
最好不要用定理那些东西
至今还是没正确答案!

X1+X2+X3+...+Xn=1 X1,X2,X3,...,Xn 为n个非负实数,n>=4求X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1的最大值.我觉得答案应该是1/4,最好不要用定理那些东西至今还是没正确答案!
全是错的!怎么都这么不负责任?
都是错误copy错误!
切比雪夫不等式 的用法还要严格吧!

x>=4 求最大值 就是说明最后决定的关键在于4 其它的1喽正解

不会i。。。

X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1<=
(X1+X2+X3+...X(n-1)+Xn)(X1+X2+X3+...X(n-1)+Xn)*(1/n)
=1/n<=1/4
呵呵 qq527162141

懒得看

引理:车比雪夫不等式
(a1+a2+...+an)(b1+b2+...+bn)>=n(a1b1+a2b2+...+anbn)
(ai,bi均为正实数,等号成立时ai=aj,bi=bj)
由引理知:X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1<=(1/n)*(X1+X2+X3+...Xn)(X1+X2+X3+...Xn)=1/n<=1/4
取等号时,x1=x2=...=xn=1/n,且n=4

由切比雪夫不等式(它的证明可以由排序不等式推出),
X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1<=
(X1+X2+X3+...X(n-1)+Xn)(X1+X2+X3+...X(n-1)+Xn)*(1/n)
=1/n<=1/4
等号在n=4,且x都相等取到

####证明过程初中生就可以理解的方法####
太难了啊,想的累,没心情了哟,明天看看吧,
答案应该是1/4没错的.当X1=X2=1/2,X3=X4=...=Xn=0,就可以了,证明比较困难吧.改天再想吧,脑子不行列,楼主选别人好了.我自己知道不好.退出,以后有想到再告诉你好了.^_^
证明:
注a^x表示a的x次方.
两两分组,设X1+X2=a1,X3+X...

全部展开

####证明过程初中生就可以理解的方法####
太难了啊,想的累,没心情了哟,明天看看吧,
答案应该是1/4没错的.当X1=X2=1/2,X3=X4=...=Xn=0,就可以了,证明比较困难吧.改天再想吧,脑子不行列,楼主选别人好了.我自己知道不好.退出,以后有想到再告诉你好了.^_^
证明:
注a^x表示a的x次方.
两两分组,设X1+X2=a1,X3+X4=a2,.....,X(n-1)+Xn=am
则a1+a2+....+am=1
(X1-X2)^2>=0=======>
X1^2+2X1*X2+X2^2>=4X1*X2============>
(X1+X2)^2>=4X1*X2==========>
X1*X2<=(X1+X2)^2/4=a1^2/4
同理
X3*X4<=a2^2/4
.
.
.
X(n-1)*Xn<=am^2/4
将以上各式叠加
X1*X2+X3*X4+...+X(n-1)*Xn<=(a1^2+a2^2+...am^2)/4
因为我们知道因为X1,X2,...Xn>=0,所以有
0<=a1,a2,...am=<1
设0=因为
1>=x
同时乘以x,
x>=x^2
因此a1>=a1^2,a2>=a2^2,...,am>=am^2,
叠加以上的不等式,同时除以4,
就有(a1^2+a2^2+...+am^2)/4<=(a1+a2+...+am)/4=1/4
所以X1*X2+X3*X4+....+X(n-1)*Xn<=1/4
到这里我们证明了最大值不会大于1/4,但没有证明有1/4最大值,但如果能举出例子来就可以了,很简单,让X1=X2=1/2,其他都等于0,那么就有最大值1/4,
所以命题成立,问题得证.

收起

从数学定理:
平方平均数>=数学平均数
可得
(X1^2+X2^2+...Xn^2)/n >= (X1+X2+...Xn/n)^2

t=X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1
可得
t<= (1/2)-(1/n)
因为n>=4
所以(1/n)<=(1/4),-(1/n)>=-(1/4)...

全部展开

从数学定理:
平方平均数>=数学平均数
可得
(X1^2+X2^2+...Xn^2)/n >= (X1+X2+...Xn/n)^2

t=X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1
可得
t<= (1/2)-(1/n)
因为n>=4
所以(1/n)<=(1/4),-(1/n)>=-(1/4)
可得t<=1/4
---------------------------------------------
如果你学过多元函数微分也可以很方便解决
用带限制条件的积分
令f(X1,X2...Xn)
=X1*X2+...X(n-1)*Xn+Xn*X1+q(X1+X2+...+Xn -1)
可以得到
X2+Xn+q=0
X1+X3+q=0
....
可以得到当X1=X2=....=Xn时
f(X1,X2...Xn)取得最大值
即X1*X2+...X(n-1)*Xn+Xn*X1取得最大值

收起

这种题目最好做了
数学里面有个叫做极限法
非常的好用
有2种极限:
1.X1=1,X2=X3=...=Xn=0
此时结果为0显然不可能
2.X1=X2=X3=...=Xn=1/n
此时结果为
n*(1/n)*(1/n)=1/n
所以结果就是1/n
个人感觉就是这样的
数学里面不只是极限法很重要,还有好多好多方法...

全部展开

这种题目最好做了
数学里面有个叫做极限法
非常的好用
有2种极限:
1.X1=1,X2=X3=...=Xn=0
此时结果为0显然不可能
2.X1=X2=X3=...=Xn=1/n
此时结果为
n*(1/n)*(1/n)=1/n
所以结果就是1/n
个人感觉就是这样的
数学里面不只是极限法很重要,还有好多好多方法
我以前就做过专门的每个方法的训练
真的很多问题可以有麻烦化为简单

收起

我来试试
答案是1/n
过程如下:
X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1
<=1/2*[(X1^2+X2^2)+(X2^+X3^).....+(Xn- 1^2+Xn^2)+(Xn^2+X1^2)]
{注:a^x表示a的x次方}
上式=X1^2+X2^2+.......+X...

全部展开

我来试试
答案是1/n
过程如下:
X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1
<=1/2*[(X1^2+X2^2)+(X2^+X3^).....+(Xn- 1^2+Xn^2)+(Xn^2+X1^2)]
{注:a^x表示a的x次方}
上式=X1^2+X2^2+.......+Xn-1^2+Xn^2
=1/2*[(X1^2+X2^2)+(X2^2+X3^2)+.....(Xn^2+X1^2)]
因为上式得MAX是党X1=X2=X3=.....Xn时成立
所以当X1=X2=X3=.....Xn时所求式能取得MAX
又有已知条件X1+X2+X3+...+Xn=1
推得 此时X1=X2=X3=.....Xn=1/n
那么
X1*X2+X2*X3+X3*X4+...X(n-1)*Xn+Xn*X1
=1/n*1/n+1/n*1/n+........1/n*1/n(共有n个)
=[(1/n)^2]*n
=1/n
可能看的不很明白,没办法,屏幕上难以表达
但我担保这是正解,自己理解下吧

收起

X2/X1(X1+X2)+X3/(X1+X2)(X1+X2+X3)+.Xn/(x1+x2+...Xn-1)(X1+X2...+Xn) 设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+x2+x3+.+xn. 已知X1+x2+X2+...+Xn=1,证明不等式:X1^2/(X1+X2)+X2^2/(X2+X3)+X3^2/(X3+X4)+.+Xn^2/(Xn+X1)>=1/2X1、X2、X3、...、Xn是正数 (x1+x2+x3+...+xn-1)(x2+x3+x4+...+xn)-(x2+x3+x4+...+xn-1)(x1+x2+x3+...+xn) Xi>=0,X1+X2...+Xn=1,n>=2,求证X1X2(X1+X2)+...+X1Xn(X1+Xn)+X2X3(X2+X3)...Xn-1Xn(Xn-1+Xn) 向量中x1+x2+x3+…+xn=1 则x1,x2,...,xn线性相关吗 x1,x2,...,xn属于R+,证明:1/x1+1/x2+...+1/xn>=2(1/(x1+x2)+1/(x2+x3)+...+1/(xn+x1)) 已知X1*X2*X3*…*Xn=1,且X1*X2*X3*…*Xn是正数 ,求证(1+X1)(1+X2)…(1+Xn)>=2^n 1,x1,x2...Xn,成等比数列,x1 x2..xn>0,x1*x2*...xn=?x1,x2...Xn,2成等比数列,x1 x2..xn>0,x1*x2*...xn=? 数列xn满足x1/x1+1=x2/x3+3=x3/x3=5=.=xn/xn+2n-1,且x1+x2+x3+.+xn=8,则首项x1为 X1/(X1+1)=(X1+X2+...+Xn)/(X1+1+X2+3+X3+5+...+Xn+2n-1) 数列xn满足x1/x1+1=x2/x3+3=x3/x3=5=.=xn/xn+2n-1,且x1+x2+x3+.+xn=8,则首项x1为?X1/(X1+1)=(X1+X2+...+Xn)/(X1+1+X2+3+X3+5+...+Xn+2n-1)是怎么来的? 不等式证明求解已知:正数x1,x2,x3……xn 满足x1+x2+x3+……+xn=1已知:正数x1,x2,x3……xn 满足x1+x2+x3+……+xn=1求证:1/(x1*(1-x1^3)+1/(x2*(1-x2^3)+1/(x3*(1-x3^3)+……+1/(xn*(1-xn^3)>4 已知x1、x2、xn∈(0,+∞),求证:x1^2/x2+x2^2/x3+…+xn-1^2/xn+xn^2/x1≥x1+x2+…+xn 已知X1+x2+X2+...+Xn=1,证明不等式:X1^2/(X1+X2)+X2^2/(X2+X3)+X3^2/(X3+X4)+.+Xn^2/(Xn+X1)>=1/2 求证:(x1+x2+……+xn)(1/x1+1/x2+1/x3+...+1/xn)>=n^2 已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+. 证明|X1+X2+X3+X4+...+Xn+X|>=|X|-(|X1|+|X2|+...+|Xn|) 在matlab中 向量X=(x1,x2,x3,...,xn) 怎样求 x1+x2+...+xn ?