已知e1,e2(是向量)是平面内的一组基底,实数x,y满足(2x-3y)e1+(5y-3x)e2=5e1+6e2,求x-y,xy的值?为什么2x-3y-5=0且3x-5y-6=0?e1,e2是基底的话,不应该是不共线向量吗?纠结好久了.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:36:20
已知e1,e2(是向量)是平面内的一组基底,实数x,y满足(2x-3y)e1+(5y-3x)e2=5e1+6e2,求x-y,xy的值?为什么2x-3y-5=0且3x-5y-6=0?e1,e2是基底的话,不应该是不共线向量吗?纠结好久了.
xSn@~F]7 Ȝ0< |P{oVB-~ۂ$T88̮9 ]D/zɡ]3̸X-zb+ fpg5~y ˣSHM&?ZN:zV4ĭ`ۺClGh,C@!r! 9aBۺ ò#FW^OCz9]B{^GqCXzKǒ/Z*C@>wH" 4p64-~jb.9ch)}.o

已知e1,e2(是向量)是平面内的一组基底,实数x,y满足(2x-3y)e1+(5y-3x)e2=5e1+6e2,求x-y,xy的值?为什么2x-3y-5=0且3x-5y-6=0?e1,e2是基底的话,不应该是不共线向量吗?纠结好久了.
已知e1,e2(是向量)是平面内的一组基底,实数x,y满足(2x-3y)e1+(5y-3x)e2=5e1+6e2,求x-y,xy的值?
为什么2x-3y-5=0且3x-5y-6=0?e1,e2是基底的话,不应该是不共线向量吗?纠结好久了.

已知e1,e2(是向量)是平面内的一组基底,实数x,y满足(2x-3y)e1+(5y-3x)e2=5e1+6e2,求x-y,xy的值?为什么2x-3y-5=0且3x-5y-6=0?e1,e2是基底的话,不应该是不共线向量吗?纠结好久了.
e1,e2(是向量)是平面内的一组基底,
那么对于平面内任何一个向量a,
都存在唯一的一组实数(x,y)使得
a=xe1+ye2
本例:(2x-3y)e1+(5y-3x)e2=5e1+6e2
即两个向量相等,那么e1,e2的两组系数
(2x-3y,5y-3x)与(5,6)是相同的
即{2x-3y=5,5y-3x=6
可以解出x= ,y=
这里e1,e2是一对不共线向量,
正因为此,才可以用e1,e2表示平面内的所有向量,
若e1,e2共线,就完了,e1,e2的倍数之和只能表示
与e1,e2共线的向量了.

已知e1,e2为平面内一组基底,向量AB=3(e1+e2),向量CB=e2-e1,向量CD=2e1+e2则四点A B C D中共线的是? 设e1 ,e2 是平面内一组基向量,且向量a=向量e1 2向量e2,向量b=-向量e1 向量e2设e1 ,e2 是平面内一组基向量,且向量a=向量e1 2向量e2,向量b=-向量e1 向量e2,则向量e1 e2可以表示为另一组基向量a,b的线性 设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ).A.e1+e2和e1-e2 B.3e1-2e2和4e2-6e1 C.e1+2e2和e2+2e1 D.e2和e1+e2 平面向量的正交分解已知e1,e2是平面内的一组基底,实数x,y满足(2x-3y)e1+(5y-3x)e2=5e1+6e2求x-y的值? 已知e1和e2是平面内所有向量的一组基底,那么下列四组不能作为一组基底的是A.e1和e1+e2 B.e1-2e2和e2-2e1C.e1-2e2和4e2-2e1D.e1-e2和e1+e2为什么选C? 已知e1,e2(是向量)是平面内的一组基底,实数x,y满足(2x-3y)e1+(5y-3x)e2=5e1+6e2,求x-y,xy的值 已知e1和e2是平面内所有向量的一组基底,那么下列四组不能作为一组基底的是A.e1-e2和e1+e2B.3e1-2e2和4e1-6e2C.e1-2e2和e1-2e2D.e2和e1+e2希望有正确的答案详细的原因解释与过程 设e1,e2是平面内的一组基地,证明:当xe1+ye2=0时,恒有x=y=0.(e1,e2是向量) 设向量e1 e2 是平面内一组基地,已知向量AB=3e1+ke2,向量BC=4e1+e2向量CD=8e1-9e2,如果ABD三点共线,求k 设e1 e2是平面内的一组基地,如果向量AB=3e1-2e2 向量BC=4e1+e2 向量CD=8e1-9e2 求证A B D三点共线. 已知e1与e2不共线,a=e1+2e2,b=2e1+λe2,要使a,b能作为平面内所有向量的一组基底,则实数,则实数λ的取值范围是? 已知向量e1,e2是平面a内所有向量的一组基底,(如下)且a=e1+e2,b=3e1-2e2,c=2e1+3e2,若c=λa+μb,(λ,μ∈R),试求λ,μ的值.我做了 可能思路不对 跟答案上结果不一样.思路明确些 若e1,e2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是A、e1-e2,e2-e1B、2e1-e2,e1-1/2e2C、2e2-3e1,6e1-4e2D、e1+e2,e1-e2 若e1,e2是表示平面内所有向量的一组基底则下面各组向量中不能作为基底的是(1)e1-e2和1/2e1+1/2e2 (2)1/2e1-1/3e2和3e1-2e2 (3)e1+1/3e2和3e1+e2 已知e1,e2不共线,a=e1+2e2,b=2e1+se2,要使a,b能作为平面内所有向量的一组基底,则实数S的取值范围是() 向量e1,e2是平面内不共线的两向量,已知向量AB=e1+ke2,向量CB=2e1+e2,向量CD=3e1-e2,若A,B,D三点共线则k 已知向量e1,向量e2是平面内两个不共线的非零向量,向量AB=2向量e1+向量e2,向量BE=向量-e1+入向量e2,向量EC=-2向量e1+向量e2,且A,E,C三点共线①求实数入的值②若向量e1=(2,1),向量e2=(2,-2)求向量BC 已知向量e1,e2是平面内不共线的两个向量.已知向量e1,e2是平面内不共线的两个向量,向量AB=e1-ke2,向量CB=2e1+e2,向量CD=3e1-e2,若A,B,D三点共线,则k的值是?注:此处向量符号省掉了