高二不等式性质的题设a,b属于有理数 求a^2+b^2+ab+1>a+b其中有个答案写的是原式=a^2+b^2+ab+1-a-b=a^2+(b-1)a+b^2-b+1令f(a)=a^2+(b-1)a+b^2-b+1△=(b-1)^2-4(b^2-b+1)=-3(b-1/3)^2-3/80恒成立 即a^2+b^2+ab+1>a+b.真的搞不懂
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:32:07
高二不等式性质的题设a,b属于有理数 求a^2+b^2+ab+1>a+b其中有个答案写的是原式=a^2+b^2+ab+1-a-b=a^2+(b-1)a+b^2-b+1令f(a)=a^2+(b-1)a+b^2-b+1△=(b-1)^2-4(b^2-b+1)=-3(b-1/3)^2-3/80恒成立 即a^2+b^2+ab+1>a+b.真的搞不懂
高二不等式性质的题
设a,b属于有理数 求a^2+b^2+ab+1>a+b
其中有个答案写的是
原式=a^2+b^2+ab+1-a-b=a^2+(b-1)a+b^2-b+1
令f(a)=a^2+(b-1)a+b^2-b+1
△=(b-1)^2-4(b^2-b+1)=-3(b-1/3)^2-3/80恒成立 即a^2+b^2+ab+1>a+b.
真的搞不懂 还有那个三角代表什么
高二不等式性质的题设a,b属于有理数 求a^2+b^2+ab+1>a+b其中有个答案写的是原式=a^2+b^2+ab+1-a-b=a^2+(b-1)a+b^2-b+1令f(a)=a^2+(b-1)a+b^2-b+1△=(b-1)^2-4(b^2-b+1)=-3(b-1/3)^2-3/80恒成立 即a^2+b^2+ab+1>a+b.真的搞不懂
在变量为x的方程a*x^2+b*x+c=0的二元一次方程中
△=b^2-4ac表示这个方程解的判别式
△>0时方程有两个解 ;△0
可以令f(a)=a^2+b^2+ab+1-a-b
令f(a)=0 构成变量为a的二元一次方程a^2+b^2+ab+1-a-b=0
在这个方程中△=(b-1)^2-4(b^2-b+1)=-3(b-1/3)^2-3/8
可以看到这个判别式为一个数的平方乘以一个负数再加上一个负数,肯定小于零
即△0是肯定成立的
所以f(a)=a^2+(b-1)a+b^2-b+1>0是肯定成立的
然后把a+b再移到等式右边,所以a^2+b^2+ab+1>a+b.
f(a)其实就是把原式这两个字换过来的
至于△就是...我不知道咋说,就是求二次不等式是否有解的
△=一次项系数-4X二次项系数X常数项
这是利用一元二次方程来求的,三角代表方程的判别式△=b^2-4ac
这里将a看成X,b看成常数