(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:43:38
x){PPN3р0M4M0ehjTO.;rm{f͓
/|r';g<ٽHd.0sV<Ϧ|}5O?ݰɮ6=)k<[akd_\gr jO
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
第一项前面乘以2*(1-1/2),在用平方差公式就OK了.
答案=2
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
(1+1/2)(1+1/2^2)(1+1/2^4)^(1+1/2^32)
(1/1000-1)×(1/999-1)×(1/998-1)×...×(1/2-1)
(1/50-1)*(1/49-1)*(1/48-1)*.*(1/2-1)
(1-1/2^2)(1-1/3^2)K(1-1/10^2)
(1-1/2^2)(1-1/3^2)K(1-1/10^2)
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15=?
(1)(2)
(1) (2)
(1)(2)
(1),(2).
(1)(2)
(1)(2)
(1)(2),
(1) (2)
200*(1-1/2)*(1-1/3)*(1-1/4)*.*(1-1/100)
(1/2+1/3+...+1/2004)(1+1/2+1/3+...+1/2003)-(1+1/2+1/3+...+1/2004)(1/2+1/3+...+1/2003)
(1-2/1)*(1-3/1)*(1-4/1)*.*(1-2007/1)*(1-2008/1)