f(X)=(1+根号下3倍的tanX)/[1+(tanX)平方],求单调递增区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 14:43:17
x)K{#N[ mlΧ۟6~|VKIbHR?P[|si;cumlz;ņ
.g[lk~
-ܨQ`ac1PO>dUh"+(NMB$Qj%#d lqf^Zo7@2RH *B@@D-\Qr@
fȲ[7ōl@ 1
f(X)=(1+根号下3倍的tanX)/[1+(tanX)平方],求单调递增区间
f(X)=(1+根号下3倍的tanX)/[1+(tanX)平方],求单调递增区间
f(X)=(1+根号下3倍的tanX)/[1+(tanX)平方],求单调递增区间
f(x) =(1+√3tanx)/(1+tan^2x).
f(x)=1+√3tanx)/sec^2x.
=(1+√3tanx)*cos^2x.
=cos^2x+√3sinxcosx.
=(1+cos2x)/2+√3/2*sin2x.
=(1/2)cos2x+√3/2sin2x+1/2.
=sin2xcos30+sin30cos2x+1/2.
∴f(x)=sin(2x+π/6)+1/2.
∵ 2kπ-π/2