设a,b属于R.且a^3-3a^2+5a=1,b^3-3b^2+5b=5,求a+b值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 07:16:55
设a,b属于R.且a^3-3a^2+5a=1,b^3-3b^2+5b=5,求a+b值.
xRN1~ġv :=챊|\A'mRB@@%Ix Q7.xf;o)`õ-Zӊx(2yH6As]j9|?٫M><0MX}Xߨ+N~-jM$XDzH ސeO6y@N61  ޜ^@eS!kS3-4+[bNE]+1Tx3exYS\#c|byoh`=헗e#?>~%7 p~nM!c|OOt{2z !SQ~(k`Қ{%kG;;ÞbS"V ŢȳdߊP`˯ѩUl^G=0?zU<+aP5/ӛY^_%M v;_

设a,b属于R.且a^3-3a^2+5a=1,b^3-3b^2+5b=5,求a+b值.
设a,b属于R.且a^3-3a^2+5a=1,b^3-3b^2+5b=5,求a+b值.

设a,b属于R.且a^3-3a^2+5a=1,b^3-3b^2+5b=5,求a+b值.
构造函数f(x)=x^3-3x²+5x,则f(a)=1,f(b)=5
由于三次曲线关于其拐点对称,下面开始求f(x)的拐点:
f'(x)=3x²-6x+5,f"(x)=6x-6.
由f"(x)=0得:x=1,f(1)=1-3+5=3,因此f(x)的拐点坐标为(1,3)
由于f'(x)=3x²-6x+5=3(x-1)²+2>0所以f(x)在整个定义域内单调递增,曲线f(x)上每一个函数值都与x值一一对应.
注意到f(a)+f(b)=1+5=6=2f(1),所以点(a,1)和(b,5)是关于拐点的对称点
a+b=2*1=2

a是2 B是1,相加是3