已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中点,连接BM,CF⊥MB,F是垂足,延长CF交AB于点E,求证:∠AME=∠CMB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:01:00
已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中点,连接BM,CF⊥MB,F是垂足,延长CF交AB于点E,求证:∠AME=∠CMB
xS͎A~An4y}C$Yt.IQk9 :9 ꯾h&s^߃jś>[meqPcꃻW]02EOLœӗtrcERj K. u*I,2\,''"'jzDKnF?eL,/q'YP$8JTs*{)Oj YSK%`n#޻ :mCw@4efp$[oA+$/Q~m}H,!UїSPGK$0D$MBK$53-a,k "ܙA2-[h7Bz2&.q?ɡSͲVѮVDk(|\m`u9<

已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中点,连接BM,CF⊥MB,F是垂足,延长CF交AB于点E,求证:∠AME=∠CMB
已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中点,连接BM,CF⊥MB,F是垂足,延长CF交AB于点E,求证:∠AME=∠CMB

已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中点,连接BM,CF⊥MB,F是垂足,延长CF交AB于点E,求证:∠AME=∠CMB
证明:过C点作CD⊥AB,垂足为D,CD与BM相干交于G
在△BCG和△ACE中
∠BCD=∠A=45°(等腰直角三角形的性质)
BC=AC
∵CF⊥MB
∴∠ACE=90°-∠CMB=∠CBM
∴△BCF≌△ACE(ASA)
∴CG=AE
在△AME和△CMG中
CG=AE(已证)
∠ACD=∠A=45°
AM=CM(已知)
∴△AME≌△CMG(SAS)
∴∠AME=∠CMB
证明完毕,希望对你的学习有所帮助.

没图啊、

请问用都少学历的知识解决 初一 初二 初三?

证明:过C点作CD⊥AB,垂足为D,CD与BM相干交于G
在△BCG和△ACE中
∠BCD=∠A=45°(等腰直角三角形的性质)
BC=AC
∵CF⊥MB
∴∠ACE=90°-∠CMB=∠CBM
∴△BCF≌△ACE(ASA)
∴CG=AE
在△AME和△CMG中
CG...

全部展开

证明:过C点作CD⊥AB,垂足为D,CD与BM相干交于G
在△BCG和△ACE中
∠BCD=∠A=45°(等腰直角三角形的性质)
BC=AC
∵CF⊥MB
∴∠ACE=90°-∠CMB=∠CBM
∴△BCF≌△ACE(ASA)
∴CG=AE
在△AME和△CMG中
CG=AE(已证)
∠ACD=∠A=45°
AM=CM(已知)
∴△AME≌△CMG(SAS)
∴∠AME=∠CMB
你最好买书,不要上网

收起