α为锐角,且满足sinα=3cosα,求sinα·cosα的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 02:57:26
α为锐角,且满足sinα=3cosα,求sinα·cosα的值
xRN@VaV&`M%AۍF. ib~a+~ օ{9wl#pU3 > N;uubߞ ҶПgmhۜv:2 لN̈́2,Tu&3E聞N+#}qN*p96J[mT^R[#nTc ?B7!@MLLU1&F!|eGMx EK"a4uo햩J dL.

α为锐角,且满足sinα=3cosα,求sinα·cosα的值
α为锐角,且满足sinα=3cosα,求sinα·cosα的值

α为锐角,且满足sinα=3cosα,求sinα·cosα的值
把sinα=3cosα两边平方得(sina)^2=1-(cosa)^2=9(cosa)^2
解出(cosa)^2=1/10
sinα·cosα=3(cosa)^2=3/10

sinα=3cosα
tanα=sinα/cosα=3
sinαcosα
=sinαcosα/(sin^2α+cos^2α)
=tanα/(tan^2α+1)
=3/(3^2+1)
=3/10

sinα=3cosα
tanα = 1/3
sinα = 1/√10
cosα = 3/√10
sinα .cosα = 3/10

因为 sinα=3cosα
两边平方 (sinα)^2=9(cosα)^2
得 (cosα)^2=1/10
sinαcosα=3((cosα)^2)=3/10

因为sinα与cosα不可能同时为零,故由sinα=3cosα得tanα=3,则sec^2 α=1+tan^2 α=10
sinα·cosα=3cosα·cosα=3cos^ α=3/10