已知PD⊥面ABCD,四边形ABCD是边长为2的正方形,E是PB的中点,Cos=√3/3①建立适当的空间直角坐标系,写出点E的坐标②在平面PAD内求一点F,使EF⊥平面PCB求详细步骤 好的话我会追加分数的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:21:06
已知PD⊥面ABCD,四边形ABCD是边长为2的正方形,E是PB的中点,Cos=√3/3①建立适当的空间直角坐标系,写出点E的坐标②在平面PAD内求一点F,使EF⊥平面PCB求详细步骤 好的话我会追加分数的
xUrF~gr;(U,k [׵ެx!֫h;4uCdev!7 !$S MHdA A40. SI O[5zl 4\宺0_Z*d-/R%Z*2M.1_oȲ7p*ʲLpbBxYs`E]XNɪD5! r,8ƊpTDc1,(* FṪ>+ܵEp'`ASEM(G"9>UN&X1Yܠz}#Nlv}yFo9nWdT3_{GϳwRDOG=H=3l-SOl֜d֋~,^m;+tfv)Lqn UJSD˙z[v@oM2{6 :Ѓ/Q IBoXKt3ȳbýs} Rm;DCuD%2A*Ǥ8S)w_Lʞ

已知PD⊥面ABCD,四边形ABCD是边长为2的正方形,E是PB的中点,Cos=√3/3①建立适当的空间直角坐标系,写出点E的坐标②在平面PAD内求一点F,使EF⊥平面PCB求详细步骤 好的话我会追加分数的
已知PD⊥面ABCD,四边形ABCD是边长为2的正方形,E是PB的中点,Cos=√3/3
①建立适当的空间直角坐标系,写出点E的坐标
②在平面PAD内求一点F,使EF⊥平面PCB
求详细步骤 好的话我会追加分数的

已知PD⊥面ABCD,四边形ABCD是边长为2的正方形,E是PB的中点,Cos=√3/3①建立适当的空间直角坐标系,写出点E的坐标②在平面PAD内求一点F,使EF⊥平面PCB求详细步骤 好的话我会追加分数的
第一个问题:
以D为原点,DC所在直线为x轴、DA所在直线为y轴、DP所在直线为z轴建立空间直角坐标系,并使点E落在第一卦限内.
容易得出A、B、C、D的坐标依次为(0,2,0)、(2,2,0)、(2,0,0)、(0,0,0).
设点P的坐标为(0,0,m),则:点E的坐标为(1,1,m/2).
∴向量DP=(0,0,m)、向量AE=(1,-1,m/2).
∴向量DP·向量AE=0+0+m^2/2=m^2/2,
 |向量DP|=√(0+0+m^2)=m、|向量AE|=√(1+1+m^2/4)=√(2+m^2/4).
∴cos<向量DP,向量AE>=向量DP·向量AE/(|向量DP||向量AE|)=√3/3,
∴(m^2/2)/[m√(2+m^2/4)]=√3/3,∴m/√(8+m^2)=√3/3,∴3m=√(24+3m^2),
∴9m^2=24+3m^2,∴6m^2=24,∴m^2=4,∴m=2.
∴点E的坐标是(1,1,1).
第二个问题:
∵点F在平面ADP内,∴可设点F的坐标为(0,a,b),∴向量EF=(-1,a-1,b-1).
又向量BP=(-2,-2,2)、向量BC=(0,-2,0).
∴向量EF·向量BP=2-2a+2+2b-2=2-2a+2b、向量EF·向量BC=0-2a+2+0=2-2a.
∵EF⊥平面PCB,∴向量EF⊥向量BP、向量EF⊥向量BC,
∴向量EF·向量BP=向量EF·向量BC=0,∴2-2a+2b=2-2a=0,∴a=1、b=0.
∴点F为AD的中点,坐标是(0,1,0).
注:坐标系有多种建立的方式,在不同的坐标系中,点E、F的坐标是有差别的.

已知四边形ABCD是矩形,PD垂直平面ABCD,PD=DC=a,AD=根号2a,M,N分别是AD、PB的中点,求证:平求证平面MNC⊥面PBC..用向量的方法解! 在四棱锥P-ABCD中,PD⊥面ABCD,四边形ABCD是菱形,E是PB上任意一点,求证AC⊥ DE 已知:如图,四边形ABCD是矩形,PB=PC,求证:PA=PD. 已知ABCD是平行四边形,AC,BD相交于O,PA⊥PC,PB⊥PD,垂足为P.求证:四边形ABCD为矩形. 如图,四边形ABCD是矩形,E、F是AB、PD的中点,求证:AF平行面PCE 已知:四边形ABCD是空间四边形,其各边四点分别是EFGH.①求证:EFGH四点共面 三角形ABCD是正方形,PD⊥面ABCD,PD=PC,E是PC的中点,证明DE⊥面PBC,求二面角C-PB-D的大小 如图ABCD是正方形,PD⊥面ABCD,PD=DC,E是PC的中点.证明:DE⊥面PBC 小弟在这里跪求了 三角形ABCD是正方形,PD⊥面ABCD,PD=PC,E是PC的中点,证明DE⊥面PBC, 已知,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=2分之根2AD,E,F为中点求证面PDC⊥面PAB 已知四边形ABCD是正方形,PD⊥平面ABCD,PD=2,AD=4 (1)求证:AC⊥平面PBD (2)求点D到平面PAC的距离 已知四边形ABCD是空间四边形, 底面ABCD是正方形,PD⊥面ABCD,EC||PD,PD=2EC,求证EB||面PAD1.证明EB||面PAD2.N为PB中点,证明EN⊥面PBD 已知ABCD是矩形,PD⊥面ABCD,PD=DC=a,AD=根号二a,M、N分别是AD、PB的中点,求点A到平面MNC的距离 如图,四边形ABCD为正方形,PD垂直面ABCD,PD平行QA,QA=AB=1/2PD、证明面PQC垂直面DCQ 已知:在平行四边形ABCD中,对角线AC、BD相较于点O,点P是平行四边形ABCD外一点,且PA⊥PC,PB⊥PD,垂足为P.求证:四边形ABCD为矩形. 已知:在平行四边形ABCD中,对角线AC、BD相交于点O,点P是平行四边形ABCD外一点,且PA⊥PC,PB⊥PD,垂足为P.求证:四边形ABCD为矩形! 如图,已知四棱锥P-ABCD中,平面PAD⊥平面ABCD,平面PCD⊥平面ABCD(1)求证:PD垂直平面ABCD(2)若PD=AD=AB=2,四边形ABCD是正方形,求点A到平面PCB的距离