求k = (x-3)/(x+1)=1- 4/(x+1) 的计算过程,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 10:57:32
x){)[V
]{:A,mC PWUx>źMn"}JPlPP&X65E32(gMXYO;ڞ/tǎgS7$Anr=P]GxcMx} m
bp;".y6m'0M_bb#mF!, _M
求k = (x-3)/(x+1)=1- 4/(x+1) 的计算过程,
求k = (x-3)/(x+1)=1- 4/(x+1) 的计算过程,
求k = (x-3)/(x+1)=1- 4/(x+1) 的计算过程,
k=(x-3)/(x+1)
=[(x+1)-4]/(x+1)
=(x+1)/(x+1)-4/(x+1)
=1-4/(x+1)
这过过程叫做分离常数.
k = (x-3)/(x+1)=(x+1-4)/(x+1)=(x+1)/(x+1)-4/(x+1)=1-4/(x+1)
k = (x-3)/(x+1)
=(x+1-4)/(x+1)
=(x+1)/(x+1)-4/(x+1)
=1-4/(x+1)
(x-3)/(x+1)=1-4/(1+x)
(x-3+4)/(x+1)=1
(x+1)/(x+1)=1
1=1(此方程无解)
k=(无解)