lim (arcsinx/x)^{[cot(x)]^2} x→0如题求极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 16:53:53
lim (arcsinx/x)^{[cot(x)]^2} x→0如题求极限
xRmOP+s I{ۮ̺//ܶ^\gl$&QD @"eCnm;W=yrsf9flq>UÈ}:Oh*_xPem-;+~o{~~Ï66}q+^ui|I, WF]6 3q/ĤQO9\8QUb'.`O6< JE-B.UH"I#B b U-5bpyoMf|ts=z`Hw =qN5qyr^s׾8w*= gV Wrΰ}H<^,F9lYJԼsWEhĪkJhԮPJfTmT-NŦ~Ӫed f342g+ 2D C74(U%DVDF(!K$Ì.c!ёD!)$R]Rp7mLgiox9Xs hST D Bi9#bQ!%bj `jݳwʚoOO|

lim (arcsinx/x)^{[cot(x)]^2} x→0如题求极限
lim (arcsinx/x)^{[cot(x)]^2} x→0
如题
求极限

lim (arcsinx/x)^{[cot(x)]^2} x→0如题求极限
我算了下,你看看行不
lim (arcsinx/x)^{[cot(x)]^2} (x→0)
=lim [1+(arcsinx-x)/x]^{[cot(x)]^2} (x→0)
=lim [1+(arcsinx-x)/x]^{[(arcsinx-x)/x]*[x/(arcsinx-x]*cot(x)]^2}(x→0)
=e^lim {[(arcsinx-x)/x]*[cot(x)]^2}(x→0)
因为cot(x)=tanx,(arcsinx-x)’=[1/(1-x^2)^0.5]-1=[1-(1-x^2)^0.5]/(1-x^2)^0.5=x^2/[(1-x^2)^0.5*(1+x^2)^0.5]
x*(tanx)^2~x^3(x→0)
极限=e^lim x^2/{[(1-x^2)^0.5]*[1+(1+x^2)^0.5]}/3x^2
=e^(1/6)
楼上的是对的,很厉害!数学比我好

请看图片



收起