lim (arcsinx/x)^{[cot(x)]^2} x→0如题求极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 16:53:53
xRmOP+s I{ۮ̺//ܶ^\gl$&QD @"eCnm;W=yrsf9flq>UÈ}:Oh*_ xPem-;+~o{~~Ï66}q+^ui|I,WF]6
3q/ĤQO9\8QUb'.`O6<JE-B.UH"I#B
bU-5bpyoMf|ts= z`Hw
=qN5qyr^s8w*= gV
Wrΰ}H<^,F9lYJԼsWEhĪkJhԮPJfTmT-NŦ~Ӫed
f342g+
2D C74(U%DVDF(!K$Ì.c!ёD!)$R]Rp7mLgiox9XshSTD Bi9#bQ!%bj `jݳwʚoOO|
lim (arcsinx/x)^{[cot(x)]^2} x→0如题求极限
lim (arcsinx/x)^{[cot(x)]^2} x→0
如题
求极限
lim (arcsinx/x)^{[cot(x)]^2} x→0如题求极限
我算了下,你看看行不
lim (arcsinx/x)^{[cot(x)]^2} (x→0)
=lim [1+(arcsinx-x)/x]^{[cot(x)]^2} (x→0)
=lim [1+(arcsinx-x)/x]^{[(arcsinx-x)/x]*[x/(arcsinx-x]*cot(x)]^2}(x→0)
=e^lim {[(arcsinx-x)/x]*[cot(x)]^2}(x→0)
因为cot(x)=tanx,(arcsinx-x)’=[1/(1-x^2)^0.5]-1=[1-(1-x^2)^0.5]/(1-x^2)^0.5=x^2/[(1-x^2)^0.5*(1+x^2)^0.5]
x*(tanx)^2~x^3(x→0)
极限=e^lim x^2/{[(1-x^2)^0.5]*[1+(1+x^2)^0.5]}/3x^2
=e^(1/6)
楼上的是对的,很厉害!数学比我好
请看图片
收起
lim(x->0)((x-arcsinx)/(tanx)^3)
lim(arcsinx/sinx) (x趋于0)
lim(arcsinx/sinx) (x趋于0)
lim (e^x-sinx-1)/(arcsinx^2)
lim(x→0)arcsinx=?
lim(arcsinx/x)(1/x^2)(x趋于0)
lim(arcsinx-x)/x^2(e^x-1)
lim(arcsinx/x)^(1/x^2)(x趋于0)
lim x趋近0 (x-arcsinx)/x^3
lim{ln[1+arcsinx]/sinx} x→0
求lim(x→0) ln(arcsinx)/cotx
怎么证明lim(x→0)arcsinx=0?
lim arcsinx/x 令arcsinx=u 则sinu=x 为什么呢?这步不懂 x-0
求x→0时lim(x-arcsinx)/(x^3)x的极限
求x→0时lim(x-arcsinx)/(sin^3)x的极限
求极限lim[(1+x)^1/x-e]/arcsinx x趋于0
求极限x趋向于0,lim(arcsinx/x)^(1/x方)
lim(x趋向0)(x-arctanx)/(x-arcsinx)=?