1/x(1/sinx–1/x)的极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 01:54:14
1/x(1/sinx–1/x)的极限
x)3ԯ0/̫x0|>ټƗ3'$/!?'3W(QP Ry?iϴ3 ,` RQ V*4fϦ/xr tb5"yOv<׭)+mtӅSP&FHA\og9L4 Mq@F0!f6yv@b

1/x(1/sinx–1/x)的极限
1/x(1/sinx–1/x)的极限

1/x(1/sinx–1/x)的极限
lim 1/x*(1/sin x-1/x)
变化得:
=lim (x-sin x)/(sin x*x^2) (sin x 与 x 是等价无穷小)
=lim (x-sin x)/(x^3) (属于0/0型,可用洛必塔)
=lim (1-cos x)/(3x^2)
=lim 2(sin x/2)^2/(3x^2) (sin x/2 与 x/2 是等价无穷小)
=lim (x^2/2)/(3x^2)
=1/6