数列{an}满足a1=1,a2=2,an+2=2an+1-an+2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 06:02:07
数列{an}满足a1=1,a2=2,an+2=2an+1-an+2
xSn@(3'x@3cOc#v*!]T%^Nʿ]'EEՍ>ι>'`O'_*7He̟aAo)|Kדuj/tmgϿXP Ҫu֘**.zM8i/l4*(RqkvL1|^V#Ôz::5D㵿| +D (55&Z[mF:u7]gspﰡ6W--CK"H5WJ|=MX~8~@mnt}{@[varCe%p8=1 Gr6|5 =6bjHr!S0 8{nH<ӱnbBJBH'KB i!nzM@Jx)-Ui[-4M"m6660\ c/[nu7

数列{an}满足a1=1,a2=2,an+2=2an+1-an+2
数列{an}满足a1=1,a2=2,an+2=2an+1-an+2

数列{an}满足a1=1,a2=2,an+2=2an+1-an+2
(Ⅰ)由an+2=2an+1-an+2得,
an+2-an+1=an+1-an+2,
由bn=an+1-an得,bn+1=bn+2,
即bn+1-bn=2,
又b1=a2-a1=1,
所以{bn}是首项为1,公差为2的等差数列.
(Ⅱ)由(Ⅰ)得,bn=1+2(n-1)=2n-1,
由bn=an+1-an得,an+1-an=2n-1,
则a2-a1=1,a3-a2=3,a4-a3=5,…,an-an-1=2(n-1)-1,
所以,an-a1=1+3+5+…+2(n-1)-1
=
(n−1)(1+2n−3)
2
=(n-1)2,
又a1=1,
所以{an}的通项公式an=(n-1)2+1=n2-2n+2.