证明等式arcsinx+arccosx=π/2 x∈(-∞,+∞) 证明当x≠0时,e^x>1+x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 21:08:02
xN@_evvAZה!
HYbU !/"^wh:
as\b.jGL)[SBj_iJ1llxBxds&U&6J/KBi(ҐN"l):V;*&g%V(LRcwt`<@7&,w-eǭ?~*b$]607l!oȰB7@G)άpD{5wru<_^E)vEpi7=hpв!,Li( t6')XS;ͭLǧc՟m§->mq_9䚬yo)&Bî[l4dKe*rJzWg/B׳*LkZ0"V
tZ2hyH'q"^.fI# t
证明等式arcsinx+arccosx=π/2 x∈(-∞,+∞) 证明当x≠0时,e^x>1+x
证明等式arcsinx+arccosx=π/2 x∈(-∞,+∞) 证明当x≠0时,e^x>1+x
证明等式arcsinx+arccosx=π/2 x∈(-∞,+∞) 证明当x≠0时,e^x>1+x
证明:arcsinx+arccosx=π/2
设 arcsinx = u,arccosx = v ,(-1≤x≤1),
则 sinu=x,cosu=√[1-(sinu)^2]=√[1-x^2],
cosv=x,sinv=√[1-(cosv)^2]=√[1-x^2],
左边=arcsinx+arccosx=
=sin(u+v)=sinuconv+conusinv=
=x^2+√[1-x^2]√[1-x^2]=
=x^2+1-x^2=
=1,
右边=sin(π/2)=1,
因为 左边=右边,故
arcsinx+arccosx=π/2 成立,(-1≤x≤1).
证明:e^x>1+x
设f(x)=e^x-(1+x),则f(0)=0,且f'(x)=e^x-1
由此可见,当x>0时f'(x)>0,从而f(x)在区间[0,+∞)
上单调增加.当x<0时f'(x)<0,从而f(x)在区间(-∞,0]上单调减少
所以,x≠0时都有f(x)>f(0)=0,即
f(x)=e^x-(1+x)>0 (x≠0)
用导数证明这个等式arcsinx+arccosx=2分之派(-1
arccosx+ arcsinx=PI/2 怎么证明
arcsinx+arccosx=?
数学/arcsinx+arccosx=?
证明:arcsinx+arccosx=π/2,x∈[-1,1]
证明:arcsinX+arccosX=X/2,X∈[-1,1]
证明:arcsinX+arccosX=X/2,X∈[-1,1]
应用导函数证明恒等式:arcsinx+arccosx= π/2
用微分中值定理证明arcsinx+arccosx=派/2
证明等式arcsinx+arccosx=π/2 x∈(-∞,+∞) 证明当x≠0时,e^x>1+x
arcsinx+arccosx+?
arcsinx=-arccosx?是否正确?若是,如何让证明对1/√(1-x^2)积分后,结果有两个,一个是 arcsinx+C一个是-arccosx+C
应用导数证明反三角函数的恒等式arcsinx+arccosx=派/2(-1<=x
证明:当x>0时,有arcsinx+arccosx=π/2
证明恒等式;arcsinx+arccosx=π/2(-1≤x≤1)
用中值定理证明:arcsinx+arccosx=兀/2求详细过程如何使用拉格朗日推导
大一高数,证明arcsinx+arccosx=π/2 微分中值定理解,
大一数学题,求①证明恒等式:arcsinx+arccosx=π/2