已知数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1)/(an-1).(n∈N*).(1)求证:数列{lg bn}是等比数列;(2)求证:(an-1)/[a(n+1)-1]=3^[2^(n-1)]+1;(3)设Sn是数列{an}的前n项和,当n≥2时,求证:Sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 23:37:14
已知数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1)/(an-1).(n∈N*).(1)求证:数列{lg bn}是等比数列;(2)求证:(an-1)/[a(n+1)-1]=3^[2^(n-1)]+1;(3)设Sn是数列{an}的前n项和,当n≥2时,求证:Sn
xSMo@+{41)`~B.p{F=FH##FDQ "Qs/tI8$zdoyWp/>p荾8'7p A0pj47)`3 2CZV_ڦ]wo ?*""n~Bgw $}}6-YY{نʖLkdSaoVx\ <݌Y3-a0=Lx 3%w4 L5ƌHpqR4YL]6*DN#&-%)0['MKm^-A5,Ra%̿tb@>菽яp6-s4rcA\n FV%ct.9xGh;9{K͐FVI:̌\XtlRķ`dQ:ǜ9r$:I `qjrfk]|L,t趨-.ASMJQbcS

已知数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1)/(an-1).(n∈N*).(1)求证:数列{lg bn}是等比数列;(2)求证:(an-1)/[a(n+1)-1]=3^[2^(n-1)]+1;(3)设Sn是数列{an}的前n项和,当n≥2时,求证:Sn
已知数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1)/(an-1).(n∈N*).
(1)求证:数列{lg bn}是等比数列;
(2)求证:(an-1)/[a(n+1)-1]=3^[2^(n-1)]+1;
(3)设Sn是数列{an}的前n项和,当n≥2时,求证:Sn

已知数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1)/(an-1).(n∈N*).(1)求证:数列{lg bn}是等比数列;(2)求证:(an-1)/[a(n+1)-1]=3^[2^(n-1)]+1;(3)设Sn是数列{an}的前n项和,当n≥2时,求证:Sn
(1) 由bn=(an+1)/(an-1) (1)
得 b(n+1)=[a(n+1)+1]/[a(n+1)-1] (2)
再将a(n+1)=(an^2+1)/2an 代入(2)
化简得 b(n+1)=(an+1)^2/(an-1)^2
故 b(n+1)=bn^2 再对两边取对数 得lgb(n+1)=2lgbn
故数列{lg bn}是首项为lgb1=lg3 公比为2 的等比数列
(2) 由(1)的结论得 bn=3^[2^(n-1)]
(an-1)/[a(n+1)-1]=(an-1)/[(an^2+1)/2an-1]=2+2/(an-1)
而bn=(an+1)/(an-1) =1+2/(an-1)
故:(an-1)/[a(n+1)-1]=bn+1=3^[2^(n-1)]+1
(3) 由bn=(an+1)/(an-1) 得an=(bn+1)/(bn-1)=1+2/(bn-1)
则Sn=a1+a2+……+an=n+Tn(其中Tn是2/(bn-1)的n项和)
故要证Sn

已知数列{an}和{bn}满足关系:bn=(a1+a2+a3+…+an)/n,(n∈N*).若{bn}是等差数列,求证{an}为等差数列 已知数列an满足an=31-6n,数列bn满足bn=(a1+a2+...+an)/n,求数列bn的前20项之和. 已知数列{an},{bn}满足a1=2,2an=1+2an*an+1,设{bn}=an-1求数列{1n}为等差数列急!!! 已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2.求{bn}通项公式 与数列有关的题目 已知数列{an}满足a1=1,a(n+1)=2an+11.求数列{an}的通项公式.2.令bn=nan,求数列{bn}的前n项和. 已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2 (1)求{an}的通项公式 已知数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1)/(an-1).(n∈N*).(1)求证:数列{lg bn}是等比数列;(2)求证:(an-1)/[a(n+1)-1]=3^[2^(n-1)]+1;(3)设Sn是数列{an}的前n项和,当n≥2时,求证:Sn 已知等差数列an,a1=10,d=2,数列an满足bn=(n/2)an-6n,n∈N*记cn=max{an,bn},求数列的Snmax{a,b}表示a与b的最大值 已知等差数列an,a1=10,d=2,数列an满足bn=(n/2)an-6n,n∈N*求数列an与bn的通向公式 已知数列an满足a1=4,an=4 - 4/an-1 (n>1),记bn= 1 / an-2 .(1)求证:数列bn是等差数列 已知数列An满足A1=1,An+1=2An+1,若Bn=An+1,求证数列Bn是等比数列 已知数列(an )和(bn )满足下列关系式:bn =n 分之a1+a2+a3+…+an 若bn =n的平方,求数列(an )...已知数列(an )和(bn )满足下列关系式:bn =n 分之a1+a2+a3+…+an若bn =n的平方,求数列(an 已知数列(an )和(bn )满足下列关系式:bn =n 分之a1+a2+a3+…+an 若bn =n的平方,求数列(an )...已知数列(an )和(bn )满足下列关系式:bn =n 分之a1+a2+a3+…+an若bn =n的平方,求数列(an 已知数列{An}与{Bn}满足:A1=λ,A(n+1)=2/3An+n-4,Bn=(-1)^n*(An-3n+21),其中x为实数,n为...已知数列{An}与{Bn}满足:A1=λ,A(n+1)=2/3An+n-4,Bn=(-1)^n*(An-3n+21),其中x为实数,n为正整数1.对任意数λ,证明数列{an}不是等比数 已知正项数列{an},{bn}满足:a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有bn,根号an,bn+1成等比数列.(1)求数列{bn}的通项公式.(2)设Sn=1/a1+1/a2+.+1/an,试比较Sn与1的大小.求哪位大仙给解下, 已知数列{an}中,a1=3/5,数列an=2-1/an-1(n≥2,n∈N*),数列{bn}满足bn=1/an-1求证明数列{bn}是等差数列 【紧急--高一数学】已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(1)若a1,a3,a4成等比数列,求数列{an}的通项 (高二数学)已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(1)若a1,a3,a4成等比数列,求数列{an}的通项公式(2