lim(x^x),x趋近于0时.解法就是:lim(x^x)=lim(e^xlnx)=e^lim(x*lnx)=e^0=1 1.为什么可以自己在算式里加上e这些的?2.为什么这样加上去等式仍然成立呢?3.e的公式用的是那一个呢?我记得有些公式是:e和loga(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:42:25
xSn@?*ʥ} Q"RUK 9Q%JVT~LI!$4)Tv'~4R^ԷXs93s8<ԴzH9zԛas :]zl7Xhk?;sye~824H߄,s7]8GlՉ卥5oeF
ųG3Gh#`8q8E#z!
vsѐ>7:?CEQ|dǴYxuHf
5'ٵ~lO,GZ#HqJ*33!d}M,uȀ/`A?cI\ܑK*PT$ܒP8%M>!cׯHOy'`KlC8x?rkw
dj|jCjl
,|WM3rwaE$i0N?YY57]S\#8-tػ3zR`yo&
I}
lim(x^x),x趋近于0时.解法就是:lim(x^x)=lim(e^xlnx)=e^lim(x*lnx)=e^0=1 1.为什么可以自己在算式里加上e这些的?2.为什么这样加上去等式仍然成立呢?3.e的公式用的是那一个呢?我记得有些公式是:e和loga(x)
lim(x^x),x趋近于0时.解法就是:
lim(x^x)=lim(e^xlnx)=e^lim(x*lnx)=e^0=1
1.为什么可以自己在算式里加上e这些的?
2.为什么这样加上去等式仍然成立呢?
3.e的公式用的是那一个呢?我记得有些公式是:e和loga(x)怎么样写仍等于e呢?(公式)
e和loga(x) 或 e和ln(x) 怎么样写仍等于e呢?
lim(x^x),x趋近于0时.解法就是:lim(x^x)=lim(e^xlnx)=e^lim(x*lnx)=e^0=1 1.为什么可以自己在算式里加上e这些的?2.为什么这样加上去等式仍然成立呢?3.e的公式用的是那一个呢?我记得有些公式是:e和loga(x)
e lnX=X,知道这个后面应该知道了吧
利用了复合函数的极限的结论:
x→x0时,u=g(x)→a
u→a时,f(u)→A
则,x→x0时,f[g(x)]→A
幂指函数u(x)^v(x)的极限与求导常用此法,也可以先取对数计算,再回代
好,我来告诉你吧!
谈不上是公式,就一常识,记好了: a^b = e^(blna)
其实,你自己倒着算一下不就记住啦? e^(blna)不就等于e^(lna^b)吗?
而e^(lna^b)不就是 a^b吗?
这是幂指数运算法则所规定的结果,高数中在哪里都可以用的~
lim sin2x/x x趋近于0
x趋近于0时,lim(sinx+tanx)/x=?
lim(n趋近于0)(arctanx)/x
lim(x/sinx)x(趋近于0)为什么等于lim(cosx)x(趋近于0)
lim(x趋近于0+)(x^x)^x=
x趋近于0 lim(x+e^x)^1/x
当x趋近于0时,lim(tanx-sinx)=?
lim tan6x/sin2x.x趋近于0时的极限,
lim x趋近于1 x^2趋近于1
lim(x-sinx)/(x+sinx),x趋近于0
lim x趋近于0 1-根号1-x/x
lim(x-sinx)/(x+sinx),x趋近于0
lim(sinx+e^x)^(1/x) x趋近于0
lim (arctan X)/x,x趋近于0,怎么解?
lim ln(1+x)^ 1/x x趋近于0
当x趋近于0 lim(1-x)^(1/x)
lim x趋近于0 ((1+2^x)/)^(1/x)
lim (e^(1/x))/x (x趋近于0-)