求导数y=(x^2+2x)^3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:45:49
求导数y=(x^2+2x)^3
xPN@UXInrE!iE48@)H$:^ rNy,">to֫o+Gzf>9KJL붹yvWnYom>Vn8c 3"175RH/V̦믧(a:%T̤YNA"N&i֞CR

求导数y=(x^2+2x)^3
求导数y=(x^2+2x)^3

求导数y=(x^2+2x)^3
用复合函数求导法则:[f(g(x))]'=f'(g(x))*g'(x)
把y看成x^3与x^2+2*x复合
所以y'=(3(x^2+2x)^2)*(2x+2)=6*x^2*(x+1)*(x+2)^2

y'=[(x²+2x)³]'=3(x²+2x)*(x²+2x)'=3(x²+2x)*(2x+2)=6x(x+2)(x+1)

y'=(3(x^2+2x)^2)*(2x+2)=(6x+6)*(x^2+2x)^2

y=(x^2+2x)^3
y′=3(x^2+2x)^2*(2x+2)