过点M(2,1)作曲线C,x=4cosa y=4sina 的玄,使M为玄的中点,则此玄所在直线方程为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 19:35:41
xNP_%[6e
HЕ!A"vgXiU,DiK/s۫&t;瞙j|5X7*R2xR.2Q\\LAuW Jh`oRD7t6mwʜ8kM/ D}o{I:5z#'=rۥÆУDQ
MҵP̂
oڟ!8D\9H
= s eHtFj<c!sK
TRtEV&l%:~BrH&l%N`)f%U$}M~rҖd)oЂnoirR, ~
过点M(2,1)作曲线C,x=4cosa y=4sina 的玄,使M为玄的中点,则此玄所在直线方程为
过点M(2,1)作曲线C,x=4cosa y=4sina 的玄,使M为玄的中点,则此玄所在直线方程为
过点M(2,1)作曲线C,x=4cosa y=4sina 的玄,使M为玄的中点,则此玄所在直线方程为
x=4cosa y=4sina 消去参数,转变为直角坐标方程,
两边平方后相加,
x^2+y^2=16,
是以原点为圆心,半径为4的圆,
M是圆弦的中点,则OM线段必垂直过点M的弦,
OM直线斜率,k1=1/2,(互相垂直的直线的斜率乘积为-1)
弦斜率k2=-1/k1=-2,
弦直线方程为:(y-1)/(x-2)=-2,
y=-2x+5.