上半球面0≤z≤√a²-x²-y²与圆柱体x²+y²≤ax(a>0)的公共部分在xoy面和xoz面上的投影详解 ,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 05:43:38
上半球面0≤z≤√a²-x²-y²与圆柱体x²+y²≤ax(a>0)的公共部分在xoy面和xoz面上的投影详解 ,
xS[N@ R @B~Z$k " (Qc+.$QJHCUNbxazlSӪs=w&[s۠37Xo8c!=|zZG+LE|*Bv.챦#s7xQKqZB/#8yg?/Gpns=NcMQu$m4"cv2v3(#:ywx"EaR1$(#'N*a# # b_LAh13=[2 Q({TJrN %7;MH4~:"

上半球面0≤z≤√a²-x²-y²与圆柱体x²+y²≤ax(a>0)的公共部分在xoy面和xoz面上的投影详解 ,
上半球面0≤z≤√a²-x²-y²与圆柱体x²+y²≤ax(a>0)的公共部分
在xoy面和xoz面上的投影详解 ,

上半球面0≤z≤√a²-x²-y²与圆柱体x²+y²≤ax(a>0)的公共部分在xoy面和xoz面上的投影详解 ,
【分析】设Γ是一条空间曲线,Π是一张平面,对于Γ上任意一点P,令Π(P)是点P在平面Π上的投影点,即Π(P)∈Π,向量Π(P)P⊥Π.所有投影点的集合称为Γ在平面Π上的投影曲线.
(1)两曲面在xoy面上的投影等于:消去两曲面表达式中的z,得到的表达式:
此题中两曲面分别为:z=√(a^2-x^2-y^2),x^2+y^2=ax,
消去z,(即把两曲线方程化为只有x,y的表达式),得:x^2+y^2=ax^2 (a>0)
(2)两曲面在xoz面上的投影等于:消去两曲面表达式中的y,得到的表达式:
此题中两曲面分别为:z=√(a^2-x^2-y^2),x^2+y^2=ax,
消去y,(即把两曲线方程化为只有x,z的表达式),得:z^2+ax=a^2 (z≥0,a>0)