设函数f(x)=x3-3ax+b(a≠0)1.若函数f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;2.求函数f(x)的单调区间.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 13:32:41
设函数f(x)=x3-3ax+b(a≠0)1.若函数f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;2.求函数f(x)的单调区间.
xՐJ@_%7I9Q R iU`DDENH5>?)Yx=A %^D/yg``I9=|fxޮ:~INNB.XtZHajW>H}Ux@7c#.pOoCG \ZSrh2f$^diD*?@&5:AØb)?W

设函数f(x)=x3-3ax+b(a≠0)1.若函数f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;2.求函数f(x)的单调区间.
设函数f(x)=x3-3ax+b(a≠0)
1.若函数f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
2.求函数f(x)的单调区间.

设函数f(x)=x3-3ax+b(a≠0)1.若函数f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;2.求函数f(x)的单调区间.
f(x)=x^3-3ax+b
f'(x)=3x^2-3a ,12-3a=0 ,a=4
8=8-24+b ,b=24
f'(x)=3x^2-12=3(x^2-4)=3(x+2)(x-2)=0 ,
x=-2 ,x=2
x

f(x)=x^3-3ax+bf'(x)=3x^2-3a ,12-3a=0 ,a=48=8-24+b , b=24f'(x)=3x^2-12=3(x^2-4)=3(x+2)(x-2)=0 ,x=-2 ,x=2x<-2 ,f'(x)>0递增-22,f'(x)>0递增

f(x)=x^3-3ax+bf'(x)=3x^2-3a ,12-3a=0 ,a=48=8-24+b , b=24f'(x)=3x^2-12=3(x^2-4)=3(x+2)(x-2)=0 ,x=-2 ,x=2x<-2 ,f'(x)>0递增-22,f'(x)>0递增