高一同角三角函数的证明证明:cosx/(1+sinx) - sinx/(1+cosx)=2(cosx-sinx)/(1+sinx+cosx) 越快越好,50以上,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 07:36:14
高一同角三角函数的证明证明:cosx/(1+sinx) - sinx/(1+cosx)=2(cosx-sinx)/(1+sinx+cosx) 越快越好,50以上,
x){zƓ O'X>ɎN }ﳩjyٌ>~Ϭ } C̼ M] 5m4@.X ,~O‹m]OK<ٽɎ."}Uv6 VȆkF[ca@2 i#Xit@M$%jYf6h0bfi"iDGؠ 7Iẍ́1Tj餛8tA5B,ƑuLtO7طSQǖ}1n=<;P&

高一同角三角函数的证明证明:cosx/(1+sinx) - sinx/(1+cosx)=2(cosx-sinx)/(1+sinx+cosx) 越快越好,50以上,
高一同角三角函数的证明
证明:cosx/(1+sinx) - sinx/(1+cosx)=2(cosx-sinx)/(1+sinx+cosx) 越快越好,50以上,

高一同角三角函数的证明证明:cosx/(1+sinx) - sinx/(1+cosx)=2(cosx-sinx)/(1+sinx+cosx) 越快越好,50以上,
证明:cosx/(1+sinx) - sinx/(1+cosx)
={(1+sinx+cosx)[cosx/(1+sinx) - sinx/(1+cosx)]}/(1+sinx+cosx)
={[(1+sinx)cosx+cos²x]/(1+sinx)-[(1+cosx)sinx+sin²x]/(1+cosx)})]}/(1+sinx+cosx)
=[cosx+cos²x/(1+sinx)-sinx-sin²x/(1+cosx)]/(1+sinx+cosx)
=[(1-sin²x)/(1+sinx)-(1-cos²x)/(1+cosx)+cosx-sinx]/(1+sinx+cosx)
=[(1+sinx)(1-sinx)/(1+sinx)-(1+cosx)(1-cosx)/(1+cosx)+cosx-sinx]/(1+sinx+cosx)
=[(1-sinx)-(1-cosx)+cosx-sinx]/(1+sinx+cosx)
=(1-sinx-1+cosx+cosx-sinx)/(1+sinx+cosx)
=2(cosx-sinx)/(1+sinx+cosx)=右边,
∴原式成立.