计算定积分 ∫(x+3)/根号(2x+1)dx,上限4,下限0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 08:37:40
计算定积分 ∫(x+3)/根号(2x+1)dx,上限4,下限0
xmOPǿJCBҭRZ ~ l*l3.O`"!̘@ Jb# ]pW|oW@xgܛs=;Jmۛvt`7Wg p#7z热u<_'SZP)䮗cy dہ Դ^=FwWʆ14,P,ECܾ$D9`UBx /J{XV~t^K1ʪjbV KbV8U)9< KRhJy`f X!B(CŐ]6 @TDlHU0V4sҀM@$@AUH)%j8.m{vcogݰ ^-bT Pd]֠hꦢKX Cj*ZɎ VW?]t_:E{=;l-,hJ4un49)$.,[o{ullt/h櫵pN$@2 i*5B0~|oxC݆#N,O9zޢ^Ob: O6e(@2'[D?|,dQBL# % /t#&1$*Iz'n0VZYa4Ae`C6dbѤ*0b12@޺*g<|wmog݋K],|$

计算定积分 ∫(x+3)/根号(2x+1)dx,上限4,下限0
计算定积分 ∫(x+3)/根号(2x+1)dx,上限4,下限0

计算定积分 ∫(x+3)/根号(2x+1)dx,上限4,下限0
∫(0->4) [(x+3)/√(2x+1) ]dx
=∫(0->4) (x+3)d√(2x+1)
= [(x+3)√(2x+1)](0->4)-∫(0->4) √(2x+1) dx
=(21-3) - (1/3) [(2x+1)^(3/2)](0->4)
=18 - (1/3)(27-1)
=28/3


满意请采纳,不懂可追问。

收起

计算定积分 ∫(x+3)/根号(2x+1)dx,上限4,下限0
先计算不定积分,不考虑积分后的待定常数项C
∫[(x+3)/sqrt(2x+1)]dx
=∫{[(2x+1)/2+3/2]/sqrt(2x+1)}dx
=∫{[(2x+1)/2]/sqrt(2x+1)}dx+∫[(3/2)/sqrt(2x+1)]dx
=1/2∫(2x+1)^(1/2)dx+3/...

全部展开

计算定积分 ∫(x+3)/根号(2x+1)dx,上限4,下限0
先计算不定积分,不考虑积分后的待定常数项C
∫[(x+3)/sqrt(2x+1)]dx
=∫{[(2x+1)/2+3/2]/sqrt(2x+1)}dx
=∫{[(2x+1)/2]/sqrt(2x+1)}dx+∫[(3/2)/sqrt(2x+1)]dx
=1/2∫(2x+1)^(1/2)dx+3/2∫dx/sqrt(2x+1)
=1/2*1/2∫(2x+1)^(1/2)d(2x+1)+3/2*1/2∫(2x+1)^(-1/2)d(2x+1)
=1/4*1/(1+1/2)(2x+1)^(1+1/2)+3/4*1/(1-1/2)(2x+1)^(1-1-2)
=1/4*(2/3)(2x+1)^(3/2)+3/4*2(2x+1)^(1/2)
=2/3*(2x+1)^(3/2)+3/2*(2x+1)^(1/2), 然后代入积分上下限:上限4,下限0
=2/3*(2*4+1)^(3/2)+3/2*(2*4+1)^(1/2)-2/3*(2*0+1)^(3/2)-3/2*(2*0+1)^(1/2)
=2/3*27+3/2*3-2/3*1-3/2*1
=18+9/2-2/3-3/2
=21-2/3
=20+(1/3)
祝你学习进步!

收起