1.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 11:01:19
1.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0
x)3{n^lΗ3<1/mvt Qu}:ƱVPg3^,y1WmMR>u /l[GGum([Q]U®qj| G:T,P6{dR%z9ϧM|9}݋۟mxָYg^ /.H̳y8

1.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0
1.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0

1.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0
|E+A| = |AA' + A| = |A(A'+E)| = |A||A'+E|
= |A| |(A+E)'|
=|A| |A+E|
= - |E+A|
所以 |E+A| = 0.
有疑问请消息我或追问

1.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0 线性代数问题.设A为n阶实方阵,且AA^T = E,证明行列式 | A |= ±1.5.设A为n阶实方阵,且AA^T = E,证明行列式 | A |= ±1. 设A为2n+1阶方阵,且满足AA^T =E,|A|>0,证明行列式|A-E|= 若A是n阶方阵,且满足AA^T=E,若|A| .设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0.我的问题是为什么|A| |E+A'|= |A| |(E+A)'|= |A| |E+A| 设A为奇数阶方阵,且AA^T=E,l Al=1.证明E-A不可逆 问一道线性代数题:设A为n阶方阵,满足AA^T=E(E是n阶单位矩阵),|A| 设A为n阶矩阵,n为奇数,且满足AA^T=E,|A|=1.求|A-E|.如题. 设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/ 设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A| 设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A| 偶线性代数自考:问个矩阵初级题设A为n阶方阵,且满足AAˊ=E和|A|=-1,E表单位矩阵,证明:行列式|E+A|=0,|E+A|=|AA'+A|=|A(A'+E)|=|A||A'+E|=-|A'+E|=-|A'+E|=-|E+A| ∴2|E+A|=0 ==> |E+A|=0-|A'+E|=-|E+A|这一步 设A为n阶方阵,AA=A ,证明R(A)+R(A-E)=n 矩阵证明题:若n阶方阵满足AA^T=E,设a是n维列向量,a^Ta=/0矩阵A=E-3aa^T.证明:A为正交矩阵的充分必要条件是a=2/3 =/是不等于的意思=/是不等于的意思 设A,B均为N阶方阵,满足AA(T)=E,B(T)B=E.|A|+|B|=0.证明:|A+B|=0.A(T)为A的转置.修改:上为BB(T)=E 设n阶方阵A满足A平方=I,AA'=I,试证为对称矩阵 设A是n阶矩阵,n是奇数,满足AA^T=E,/A/=1,求/A-E/ 设A为n阶方阵,且满足(A-E)^2=2(A+E)^2,证明A是可逆的,并求A^-1