设A*为N阶方阵A的伴随矩阵,证明是det(A)=o,则det(A*)=0.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 17:33:31
设A*为N阶方阵A的伴随矩阵,证明是det(A)=o,则det(A*)=0.
xRMN@E p"]v[" !N:/ Hy*Wgnev4}orI _uM>ΘiQʂcG7x焻ǝq?sdZq#nVѦP.+㓥'·5}i:M^~ ͖ 6i\_YdGwd;~?;d/Q ?hh1N= DJBFT˶awٴŦBf~֦6D o!09Q>j:t0ʼV ;yau ijE*@W($ȣ(V1汰 ]ĽN%W d?$/y<RO Y4w쥖0rEjr5De{oqe@' _bқc1z^~pBh

设A*为N阶方阵A的伴随矩阵,证明是det(A)=o,则det(A*)=0.
设A*为N阶方阵A的伴随矩阵,证明是det(A)=o,则det(A*)=0.

设A*为N阶方阵A的伴随矩阵,证明是det(A)=o,则det(A*)=0.
det(A)=o说明R(A)

det(A)=o,什么意思

或者你可以对A进行初等变换成有两行或两列完全相等的方阵det(A)=o是必然可以,这样他们对应的余子式是相同的,这样伴随矩阵就有了两列或行完全相同的。。这种情况det(A*)=o 初等变换是在det(A)不变的情况下进行的,可以这么证明。。。。
让我茅塞顿开啊,谢了楼上的,我刚开始也想detA=0,那么必然可以使两行成比例,对的,可以相等,这就好说了啊。...

全部展开

或者你可以对A进行初等变换成有两行或两列完全相等的方阵det(A)=o是必然可以,这样他们对应的余子式是相同的,这样伴随矩阵就有了两列或行完全相同的。。这种情况det(A*)=o 初等变换是在det(A)不变的情况下进行的,可以这么证明。。。。
让我茅塞顿开啊,谢了楼上的,我刚开始也想detA=0,那么必然可以使两行成比例,对的,可以相等,这就好说了啊。

收起