设A为mxn实矩阵,AtA为正定矩阵,证明线性方程AX=0只有零解 急没人会做吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:49:09
设A为mxn实矩阵,AtA为正定矩阵,证明线性方程AX=0只有零解 急没人会做吗
xSN@~ Mi{MH^B8 GDLєB m{PLL63|73L^FcZѵ{3[Z!2Q; y2iEJ}r6qj,3"ys,˙q白 *鼒F+ cL{E/*LuT*4tGnu˒L"9̬W˴Ucv호Y%o1f,|VNl|Qàu&6d!f.raNҏmA8` 8MRW.b:qy۠a"PL0@D:pհ0G"$yiPϼHJ)$)eP=1K3*r1N$H!'#-,bL#MsKpTpݜBo$,

设A为mxn实矩阵,AtA为正定矩阵,证明线性方程AX=0只有零解 急没人会做吗
设A为mxn实矩阵,AtA为正定矩阵,证明线性方程AX=0只有零解 急
没人会做吗

设A为mxn实矩阵,AtA为正定矩阵,证明线性方程AX=0只有零解 急没人会做吗
设A为mxn实矩阵,A^tA是正定矩阵,
所以|A^tA|>0,从而(A^tA)的秩是n
从而方程(A^tA)X=0只有零解.
下面只要证方程(A^tA)X=0与方程AX=0有相同的解即可.
1)设α设是方程AX=0的解,那么Aα=0
从而(A^tA)α=A^t(Aα)=A^t*0=0,即α是方程(A^tA)X=0的解
2)设α设是方程(A^tA)X=0的解,则(A^tA)α=0
从而α^t(A^tA)α=(Aα)^t(Aα)=0
而Aα是mx1的矩阵,设Aα=(x1,x2,...,xm)^t
所以α^t(A^tA)α=(Aα)^t(Aα)=x1^2+x2^2+..+xm^2=0
由于x1,x2,...,xm是实数,所以x1=x2=...=xm=0
所以Aα=0
所以α是方程AX=0的解,
因此方程(A^tA)X=0与方程AX=0有相同的解,从而Ax=0只有零解.