已知cosB = cos θ*sinA,cosC = sinθ*sinA.θ为已知角.则sin^2 A + sin^2 B +sin^2C等于多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 18:18:55
已知cosB = cos θ*sinA,cosC = sinθ*sinA.θ为已知角.则sin^2 A + sin^2 B +sin^2C等于多少?
x){}Kl¹Zřy:@3PȆd.'= 3RpTV k;{d mb~ E`:?K $ StKg֪gV@%p &i"+ 5^EVdP->LaU6M7>چ~qAb4NmɎ%/|:mOwn~6mmO'=iׂcX-iP:ۂ[Oh(C O(\

已知cosB = cos θ*sinA,cosC = sinθ*sinA.θ为已知角.则sin^2 A + sin^2 B +sin^2C等于多少?
已知cosB = cos θ*sinA,cosC = sinθ*sinA.θ为已知角.则sin^2 A + sin^2 B +sin^2C等于多少?

已知cosB = cos θ*sinA,cosC = sinθ*sinA.θ为已知角.则sin^2 A + sin^2 B +sin^2C等于多少?
已知cosB = cos θ*sinA, cosC = sinθ*sinA
所以cosθ=cosB/sinA, sinθ=cosC/SinA
因为(sinθ)^2+(cosθ)^2
=(cosB/sinA)^2+(cosC/SinA)
=(cos^2 B+cos^2 C)/sin^2 A
=1
所以sin^2 A=cos^2 B+cos^2 C
所以sin^2 A + sin^2 B +sin^2 C
=cos^2 B+cos^2 C+ sin^2 B +sin^2 C
=1+1
=2

cosB = cos θ*sinA, cosC = sinθ*sinA
两边同时平方然后相加可得到
cos^2B+cos^2C=sin^2A
整理可得sin^2A+sin^2B +sin^2C=2