已知:xyz∈R+且x+y+z=1,求证:(1-x)(1-y)(1-z)≥8xyz该如何证明?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:47:20
x){}K**uti?1BRPƦ4u+4D%|ԹO5=;ٌ>{"}r0PΆꅲ+m+* ~>eE3m3Щ*;Pѳ;oԂ*d*Pd*+0TeiZCifa_\g
M0gD$m|fP ybD
已知:xyz∈R+且x+y+z=1,求证:(1-x)(1-y)(1-z)≥8xyz该如何证明?
已知:xyz∈R+且x+y+z=1,求证:(1-x)(1-y)(1-z)≥8xyz
该如何证明?
已知:xyz∈R+且x+y+z=1,求证:(1-x)(1-y)(1-z)≥8xyz该如何证明?
1-x=y+z
1-y=x+z
1-z=x+y
由题意知x>0,y>0,z>0
y+z>=2根号y*根号z
x+z>=2根号x*根号z
y+x>=2根号y*根号x
(1-x)(1-y)(1-z)>=2根号y*根号z*2根号x*根号z*2根号y*根号x=8xyz
即(1-x)(1-y)(1-z)≥8xyz
1-x=y+z
1-y=x+z
1-z=x+y
由题意知x>0,y>0,z>0
y+z>=2根号y*根号z
x+z>=2根号x*根号z
y+x>=2根号y*根号x
(1-x)(1-y)(1-z)>=2根号y*根号z*2根号x*根号z*2根号y*根号x=8xyz
即(1-x)(1-y)(1-z)≥8xyz
请采纳
已知:xyz∈R+且x+y+z=1,求证:(1-x)(1-y)(1-z)≥8xyz该如何证明?
已知x,y,z∈R+,且x+y+z=8,xyz=5,求证:x,y,z中至少有一个小于1
已知x,y,z∈R+,且x+y+z=8,xyz=5,求证:x,y,z中至少有一个小于1.
若x,y,z∈R+,且x+y+z=xyz,求证:(y+z)/x+(z+x)/y+(x+y)/z>2(1/x+1/y+1/z)
若x,y,z∈R,且x+y+z=xyz,求证:(y+z)/x+(z+x)/y+(x+y)/z≥2(1/x+1/y+1/z)^2
请教:已知x、y、z∈R+,且xyz(x+y+z)=1,则(x+y)(y+z)的最小值是多少
已知x,y,z∈R+.求证(1+x2)(1+y2)(1+z2)≥8xyz
已知xyz∈R+求证:(1+x²)(1+y²)(1+z²)≥8xyz
已知xyz属于R,x+y+z=1,求证x方+y方+z方大于等于1/3
已知x,y,z是正实数,且xyz=1,求证
x,y,z属于R,且xyz(x+y+z)=1,求证(x+y)(y+z)≥2
已知x、y、z∈R+,求证x⒋+y⒋+z⒋≥(x+y+z)xyz
已知x,y,z都是正数,且xyz=1,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥3/2
已知x,y,z∈R+,且x+2y+3z=3,.则xyz的最大值是_____.
已知x、y、z∈R+,xyz=1,求证:x/(1+xy)+y/(1+yz)+z/(1+zx)≥3/2.
已知 X+Y+Z=a xyz∈R+ 求证X^2+Y^2+Z^2>=(1/3)a^2
已知xyz∈R+且x+y+z=1,证明1/x^2+1/y^2+1/z^2≥27
已知X,Y,Z为三个互不相等的数,且X+ 1/Y =Y+ 1/Z = Z+ 1/X.求证:(XYZ)^2 = 1