已知:xyz∈R+且x+y+z=1,求证:(1-x)(1-y)(1-z)≥8xyz该如何证明?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:47:20
已知:xyz∈R+且x+y+z=1,求证:(1-x)(1-y)(1-z)≥8xyz该如何证明?
x){}K**uti?1BRPƦ4 u+4D%|ԹO5=;ٌ>{"}r0PΆꅲ+m+* ~>eE3m3Щ*;Pѳ;oԂ*d*Pd*+0TeiZCifa_\g M0gD$m|fPybD

已知:xyz∈R+且x+y+z=1,求证:(1-x)(1-y)(1-z)≥8xyz该如何证明?
已知:xyz∈R+且x+y+z=1,求证:(1-x)(1-y)(1-z)≥8xyz
该如何证明?

已知:xyz∈R+且x+y+z=1,求证:(1-x)(1-y)(1-z)≥8xyz该如何证明?
1-x=y+z
1-y=x+z
1-z=x+y
由题意知x>0,y>0,z>0
y+z>=2根号y*根号z
x+z>=2根号x*根号z
y+x>=2根号y*根号x
(1-x)(1-y)(1-z)>=2根号y*根号z*2根号x*根号z*2根号y*根号x=8xyz
即(1-x)(1-y)(1-z)≥8xyz

1-x=y+z
1-y=x+z
1-z=x+y
由题意知x>0,y>0,z>0
y+z>=2根号y*根号z
x+z>=2根号x*根号z
y+x>=2根号y*根号x
(1-x)(1-y)(1-z)>=2根号y*根号z*2根号x*根号z*2根号y*根号x=8xyz
即(1-x)(1-y)(1-z)≥8xyz
请采纳