已知x+y+z=0求证x*x*x+y*y*y+z*z*z=3xyz

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:38:43
已知x+y+z=0求证x*x*x+y*y*y+z*z*z=3xyz
x){}K++l mlzB +PJ m+*lIP_`gC/xweqڑ@gkekVy6鲦';UTQ U U@l[Qg3VTVVVUh*@<3{"#

已知x+y+z=0求证x*x*x+y*y*y+z*z*z=3xyz
已知x+y+z=0求证x*x*x+y*y*y+z*z*z=3xyz

已知x+y+z=0求证x*x*x+y*y*y+z*z*z=3xyz
题意即要求证X^3+Y^3+Z^3-3XYZ=0
证明如下:x^3+y^3+z^3-3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
因为X+Y+Z=0,所以上式等于0.所以x^3+y^3+z^3-3xyz=0,X^3+Y^3+Z^3=3XYZ,得证.