计算∫(0,1)dx∫(x,1)e^(y^2)dy= 答案是1/2(1-1/e),求详细解答

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 21:47:03
计算∫(0,1)dx∫(x,1)e^(y^2)dy=      答案是1/2(1-1/e),求详细解答
x){nuu01L*88#͔J[0xvʳf7705OyewX(oTOy`_`gC}g\4uOwMy~)P5]9`'<]|m,|Y`[ *JMf 4U 0J] Z8#P$فBش

计算∫(0,1)dx∫(x,1)e^(y^2)dy= 答案是1/2(1-1/e),求详细解答
计算∫(0,1)dx∫(x,1)e^(y^2)dy=
答案是1/2(1-1/e),求详细解答

计算∫(0,1)dx∫(x,1)e^(y^2)dy= 答案是1/2(1-1/e),求详细解答
题目应该是e^(-y^2)
交换积分次序:
= ∫(0,1)dy ∫(0,y) e^(-y^2) dx
= ∫(0,1) ye^(-y^2)dy
= 1/2 * ∫(0,1) e^(-y^2)dy^2
= 1/2 * (1-1/e)