如何简便计算:1/1*2+1/2*3+1/3*4+.1/98*99+1/99*100

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:37:45
如何简便计算:1/1*2+1/2*3+1/3*4+.1/98*99+1/99*100
xRNA}BBۥ;3;,G߂_Ъ֘ &MJ("G%&ML- hds9{ ~{톧 ":= O_DrDdtuu=G0.X_SQu_ <K %$-Ff5'% 1A&6n*bՏp28Y> u)!= ;岱Ff3*p셽Z,/d-$Aނ;6^ÖXʒ)Ϭ` ^Yt|h\4/їõ?@3utxx8T[]Qh\@,m(Ht#hdU!jq))㄃`&Mc)YӥOOVmcXWrbZ+52K#ٮ'ŒcV =rcjAMͶ8m8Dh*4 S.F%DZXsmc2GщBuqL`Ž^&^ĖlM]{Nuko#s4

如何简便计算:1/1*2+1/2*3+1/3*4+.1/98*99+1/99*100
如何简便计算:1/1*2+1/2*3+1/3*4+.1/98*99+1/99*100

如何简便计算:1/1*2+1/2*3+1/3*4+.1/98*99+1/99*100
1/1*2=(2-1)/2*1=2/2*1-1/2*1=1/1-1/2
同理:1/2*3=(3-2)/2*3=1/2-1/3
……
1/99*100=1/99-1/100
1/1*2+1/2*3+1/3*4+.1/98*99+1/99*100
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-……-1/99+1/99-1/100 (注意观察第2、3项,第4、5项的关系)
=1-1/100
=99/100

用分项法,有个公式很好用,1/[n(n+a)]=1/a[(1/a)-1/(n+a)],这个公式是很万能,你好好检验。谢谢!

要用软件计算么?

另外,可变为:(1/1+1/1)+(2/2+1/2)+(3/3+1/3)+(4/4+1/4)+....+(99/99+1/99)=

99+(1/1+1/2+1/3+1/4+...+1/99)

结果是:104.1774