如图

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/03 14:56:17
如图
xRNA} Ctg Ҫb^" VQj".|f-Wn 7͜};; _/Ss}8}z _Dfq1x&s~2˸_g_e&h~vv*Ih Y Z&TJԤtEt4\dz,Ap"3,{|RjNڥ ŸK

如图
如图

如图
第一问:BD=4,证明如下
∵P为优弧BAC中点
∴PB=PC
∵∠PBA和∠PCA是同弧PA所对的圆周角
∴∠PBA=∠PCA
∵BD=AC=4
∴用边角边证△PBD≌△PCA
∴PD=PA
∴△PAD是以AD为底边的等腰三角形
第二问
令PC=PB=x PA=y
∠PBA=∠PCA cos∠PAB=五分之根号五
根据余弦定理得:
(PA²+AB²-BP²)/(2AB·AP)=五分之根号五 => y²+36-x²=五分之十二倍根号五y
(PB²+AB²-PA²)/(2PB·AB)=(PC²+AC²-PA²)/(2PC·AC) => x²=y²+24
代入得:
x=根号29 y=根号5
所以PA=根号5
楼上的写错了