a已知数列{an}的前n项和Sn=-an-(1/2)^n-1+2,n为整数,现令Cn=(n+1)|n*an,求Tn=令bn=2^nan,求证数列{bn}是这是第一个问,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 03:49:05
a已知数列{an}的前n项和Sn=-an-(1/2)^n-1+2,n为整数,现令Cn=(n+1)|n*an,求Tn=令bn=2^nan,求证数列{bn}是这是第一个问,
xRJ@,LB6ӍBRR U-Vj*>Ԗ3] L>T739gΝ{'NTƮP0&p[3r`S,u +? E&}UbM^q0(ʹq6GבIjV_gRA+i:5RR(\Ĥ"=aԷ\i= d3 ߖŨx N+RFz8i+TPɈ#/B>̣@ I\ᨣi[`IG0A*V! ` (ʈFix&F f",T+DKaO2s9Y\#ZW>VMQ֎ʥpY7Qm?n⨆/C_;I7L6yF

a已知数列{an}的前n项和Sn=-an-(1/2)^n-1+2,n为整数,现令Cn=(n+1)|n*an,求Tn=令bn=2^nan,求证数列{bn}是这是第一个问,
a已知数列{an}的前n项和Sn=-an-(1/2)^n-1+2,n为整数,现令Cn=(n+1)|n*an,求Tn=
令bn=2^nan,求证数列{bn}是
这是第一个问,

a已知数列{an}的前n项和Sn=-an-(1/2)^n-1+2,n为整数,现令Cn=(n+1)|n*an,求Tn=令bn=2^nan,求证数列{bn}是这是第一个问,
Sn=-an-(1/2)^(n-1)+2 (1)
S(n-1)=-a(n-1)-(1/2)^(n-2)+2 (2)
(1)-(2)
an=a(n-1)-an+(1/2)^(n-1)
2an=a(n-1)+(1/2)^(n-1)
等式两边同乘2^(n-1),得
2^nan=2^(n-1)a(n-1)+1
即bn=b(n-1)+1
b1=2a1=s1+a1=-1+2=1
bn=b1+1*(n-1)=n,an=2^n*n
cn=(n+1)*2^n
Tn=2*2^1+3*2^2+ +(n+1)*2^n
2Tn=2*2^2+3*2^3 +n*2^n+(n+1)*2^(n+1)
Tn=(n+1)*2^(n+1)-(2^n+2^(n-1)+ 2^2+2^1)-2=(n+1)*2^(n+1)-2^(n+1)=n*2^(n+1)

因为Sn=-an-(1/2)^(n-1)+2
所以S(n-1)=-a(n-1)-(1/2)^(n-2)+2
两式相减,得an=a(n-1)-an+(1/2)^(n-1)
即2an=a(n-1)+(1/2)^(n-1)
等式两边同乘2^(n-1),得
2^nan=2^(n-1)a(n-1)+1
即bn=b(n-1)+1