设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列步骤简要但要准确,我发现有的答案根本就不正确

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:30:03
设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列步骤简要但要准确,我发现有的答案根本就不正确
xUMO0+=6JOY8NZ@-)j|LEL@Kˏb=/쵝P@;LC~}~u~eaދf RcvV*CۏۢRG85d}[gY؄Y9˵qHؕ LΏeX&ww:m7yb =^,& wnPȗgkD(^K *!G§h=jD4 M7":f٨j61VY1%==XJD/ 8҈RPr|B fbjqꎆ!& `+g74hݤ ׮p *t"H8϶0)

设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列步骤简要但要准确,我发现有的答案根本就不正确
设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列
步骤简要但要准确,我发现有的答案根本就不正确

设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列步骤简要但要准确,我发现有的答案根本就不正确
证:
第一种方法
Sn+1=(n+1)[a1+a(n+1)]/2
Sn=n(a1+an)/2
Sn-1=(n-1)[a1+a(n-1)]/2
a(n+1)=Sn+1-Sn=(n+1)[a1+a(n+1)]/2-n(a1+an)/2
整理,得
a1=(1-n)a(n+1)+nan (1)
an=Sn-Sn-1=n(a1+an)/2-(n-1)[a1+a(n-1)]/2
整理,得
a1=(2-n)an+(n-1)a(n-1) (2)
由(1),(2)得
(1-n)a(n+1)+nan=2an-nan+(n-1)a(n-1)
整理,得
(n-1)[a(n+1)+a(n-1)]=2(n-1)an
a(n-1)有意义,n≥2,n-1≥1≠0
同除以n-1
a(n+1)+a(n-1)=2an
a(n+1)-an=an-a(n-1)
为定值,数列是等差数列.
第二种方法,数学归纳法,麻烦但实用.
S1=a1=1*(a1+a1)/2,不管a1取何值,等式恒成立.
S2=a1+a2=2(a1+a2)/2 不管a1,a2取何值,等式恒成立.
S3=a1+a2+a3=3(a1+a3)/2
整理,得
a2=a1/2+a3/2
2a2=a1+a3
a2-a1=a3-a2
设a3-a2=a2-a1=d
假设当n从3到k(k为自然数,且k≥3)时,ak-a(k-1)=a(k-1)-a(k-2)=d均成立,则有ak=a1+(k-1)d
当n=k+1时,
Sk+1=(k+1)[a1+a(k+1)]/2
Sk=k(a1+ak)/2
a(k+1)=Sk+1-Sk=(k+1)[a1+a(k+1)]/2-k(a1+ak)/2
整理,得
(k-1)a(k+1)-kak+a1=0
(k-1)a(k+1)-k[a1+(k-1)d]+a1=0
(k-1)a(k+1)-ka1-k(k-1)d+a1=0
(k-1)[a(k+1)-a1-kd]=0
k为不小于3的自然数,k-1≠0,因此
a(k+1)-a1-kd=0
a(k+1)=a1+kd=a1+(k-1)d+d=ak+d
a(k+1)-ak=d
同样成立.
即对于确定的a1,a2,从a3开始,每一项减前一项的差均为定值a2-a1
{an}是等差数列.

设数列{an}的前n项和为sn,若对于所有的正整数n,都有sn=n(a1+an)/2,证明{an}是等差数列设数列{an}的前n项和为sn,若对于所有的正整数n,都有sn=n(a1+an)/2,证明{an}是等差数列 设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,都有...) 设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列.请按照我的思路来做.设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列.我的思路为 an=sn-sn 设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列步骤简要但要准确,我发现有的答案根本就不正确 设数列{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项求{an}的通项公式 设{an}是正数组成的数列,其前n项的和为Sn,并且对于所有的自然数n,存在正数t,使an与t的等差中项等于...设{an}是正数组成的数列,其前n项的和为Sn,并且对于所有的自然数n,存在正数t,使an与t的等 设数列{an}前n项和为Sn,已知对于所有的自然数n属于正正数,都有Sn=n(a1+an)/2,求证{an}是等差数列数列 设数列an的前n项和为Sn,若Sn=a1(3的n次方-1)/2(对于所有的n大于等于1),且a4=54 设数列{an}的各项都为正数,其前n项和为sn,已知对任意n,sn是an的平方和an的等差设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,am与2的等差中项等于Sn与2的等比中项(1)写出数列{an 设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n属于N*,都有8Sn=(an+2)^2设bn=4/an*an+1,Tn是数列{bn}的前n项和,求使得Tn 设an是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项求:1,数列绝对值an的通项公式 2,数列绝对值an的前n项和 设数列{an}前n项和为Sn,已知对于所有的自然数n属于正正数,都有Sn=n(a1+an)/2,求证{an}是等差数列回答也会越详细,越准确,越好哦, 数学必修五——数列题设数列{an}的前n项和为Sn,对于所有的自然数n,都有Sn=n(a1+an)/2.(1)求证{an}是等差数列(2)若S10=310.S20=1220,试确定前n项和Sn的公式 设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n都属于正整数an与2的等差中项等于Sn与2的等比中项求(1)写出数列{an}的前3项(2)求数列{an}的通项公式(写出推证过程) 一道数列题,设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,且8sn=(an+2)^2;若bn=4/(an*an+1),tn为前n项的和,且tn 设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,am与2的等差中项等于Sn与2的等比中项(1)写出数列{an}的前3项(2)求数列{an}的通项公式(写出推理过程) 设an是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.an=4n-2令bn=1/2 (an+1 /an +an /an+1 )(n∈N),求证b1+b2+…+bn 设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n都属于正整数,都有8Sn=(an+2)²(1)写出数列{an}的前3项(2)求数列{an}的通项公式(写出推证过程)(3)设bn=4/an*an+1,Tn是数列{bn}的前