已知数列{an}的前n项和Sn=n²-8n,求数列{|an|}的前n项和Tn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 21:02:33
已知数列{an}的前n项和Sn=n²-8n,求数列{|an|}的前n项和Tn
xPJ1 3dMd~b qZD\XHB}MgjW\B8ܛsMԊח ~z fY첛 [N|KݶF7GN K,d`IQVATb-6\n~ ڊ0KTlB-S7=̳͵Pq#0^PGdrl$.!͕z9R(łFCH@{; F>\h1XyoXm(KiZDRJ!Xʠ׵0lGpGH

已知数列{an}的前n项和Sn=n²-8n,求数列{|an|}的前n项和Tn
已知数列{an}的前n项和Sn=n²-8n,求数列{|an|}的前n项和Tn

已知数列{an}的前n项和Sn=n²-8n,求数列{|an|}的前n项和Tn
an =Sn -S(n-1)
= 2n-9
an >0
2n-9 >0
n >9/2
for n 5
Tn = -(a1+..+a4) +(a5+a6+..+an)
= 16 + (n-4)(n-4)
= n^2-8n+32

an=Sn-Sn-1=n²-8n-[(n-1)²-8(n-1)]=n²-8n-[n²-2n+1-8n+8]=n²-8n-[n²-10n+9]=2n-9,首项为a1=S1=-7,所以满足此式,当n>=5时,an>0,所以Tn=|S4|+|Sn-S4|=16+n²-8n+16=n²-8n+32(n>4),T1=7,T2=12,T3=15,T4=16