一道用中值定理证明的证明题.设f(x)在[a,b]上连续,在(a,b)内可导,f(a)=f(b)=1,证明:存在ξ,η∈(a,b)使e^(η-ξ )[f(η )+f '(η )]=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 11:54:51
x͒J@_eo!O6?RlB`P6`|tNGH綉P#DJT:hGeCӭc>jgաY{d ۬!>Cڝ1*$8|H% (r=6V!*&5۴d+%?oݧ7 | 7fb$%"ѓ ĞFXtq!h=^_PK냑&UV)P
一道用中值定理证明的证明题.设f(x)在[a,b]上连续,在(a,b)内可导,f(a)=f(b)=1,证明:存在ξ,η∈(a,b)使e^(η-ξ )[f(η )+f '(η )]=1
一道用中值定理证明的证明题.
设f(x)在[a,b]上连续,在(a,b)内可导,f(a)=f(b)=1,证明:存在ξ,η∈(a,b)使e^(η-ξ )[f(η )+f '(η )]=1
一道用中值定理证明的证明题.设f(x)在[a,b]上连续,在(a,b)内可导,f(a)=f(b)=1,证明:存在ξ,η∈(a,b)使e^(η-ξ )[f(η )+f '(η )]=1
首先,由g(x) = e^x在[a,b]连续,在(a,b)可导,根据Lagrange中值定理,
存在ξ ∈ (a,b),使e^ξ = g'(ξ) = (g(b)-g(a))/(b-a) = (e^b-e^a)/(b-a).
其次,由h(x) = e^x·f(x)在[a,b]连续,在(a,b)可导,根据Lagrange中值定理,
存在η ∈ (a,b),使e^η(f(η)+f'(η)) = h'(η) = ((h(b)-h(a))/(b-a) = (e^b-e^a)/(b-a) (f(a) = f(b) = 1).
于是e^η(f(η)+f'(η)) = e^ξ,即有e^(η-ξ)(f(η)+f'(η)) = 1.
一道关于微分中值定理的证明题求解是一道关于微分中值定理的证明题,题目:设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+ f(1)+ f(2)=3,f(3)=1,试证必存在ξ在(0,3)内,使f(ξ)=0.哪位大
一道高数微分中值定理不等式证明题设x>0,证明:ln(1+x)>(arctanx)/(1+x).在用柯西定理证明的时候,令f(x)=(1+x)ln(1+x),g(x)=arctanx,但是x明明是大于0的,为什么可以对[f(x)-f(0)]/[g(x)-g(0)]应用柯西定理?x
一道用中值定理证明的证明题.设f(x)在[a,b]上连续,在(a,b)内可导,f(a)=f(b)=1,证明:存在ξ,η∈(a,b)使e^(η-ξ )[f(η )+f '(η )]=1
问一道关于微分中值定理的数学题设函数f(x)在[0,1]上连续,在区间(0,1)上可导,且有f(1)=2f(0),证明在(0,1)内至少存在一点m,使得(1+m)f'(m)=f(m)成立.要用微分中值定理来做,
中值定理的证明题
中值定理的证明题
一道高数证明题(中值定理)
设f(x)=(3-x^2),x1.证明f(x)在[0,2]上满足拉格朗日中值定理
中值定理的证明
一道关于中值定理的证明题,第14题
问一道用柯西中值定理证明的题
一道有关中值定理和导数的证明题,
中值定理证明题
用中值定理证明,
用中值定理证明
用中值定理证明
用中值定理证明
一道拉格朗日中值定理的证明题求证:当x>0时,有1/(1+x)