f(x)=x^3+bx^ 2+cx 有两个不同的极值点A,B.设f(x)在点(1,f(1))和(-1,f(-1))的斜率为K1和K2,若A,B∈(-1,1),求k1k2的积可能取到的最大整数值
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 03:38:30
xQJ@ܐmv=@/)zZS(PBO)SHZS?d6b?!fhjؒn\6md.$^'8|.ݦëdt(m~%4=!@TZ'$-QDE(^ڻEMŧ+4U[6RI n].3b$ϒjiqlUmg`. 6L[r4ϱ0S$ͩK`9\Gt(8>8/8<^JY
Ѩ
d-gm<?3B
/(m!!D+^ufrA14S/QKg+gvijųIUo
f(x)=x^3+bx^ 2+cx 有两个不同的极值点A,B.设f(x)在点(1,f(1))和(-1,f(-1))的斜率为K1和K2,若A,B∈(-1,1),求k1k2的积可能取到的最大整数值
f(x)=x^3+bx^ 2+cx 有两个不同的极值点A,B.设f(x)在点(1,f(1))和(-1,f(-1))的斜率为K1和K2,若A,B∈(-1,1),求k1k2的积可能取到的最大整数值
f(x)=x^3+bx^ 2+cx 有两个不同的极值点A,B.设f(x)在点(1,f(1))和(-1,f(-1))的斜率为K1和K2,若A,B∈(-1,1),求k1k2的积可能取到的最大整数值
对f(x)求导,
f'(x)=3x^2+2bx+c,
所以k1k2=(3-2b+c)(3+2b+c)=(c+3)^2-4b^2,
又对f'(x),判别式大于0,b^2-3c>0,
y=f'(x)对称轴∈(-1,1),-3<b<3,
(c+3)^2-4b^2<(3+(b^2)/3)^2-4b^2=(3-(b^2)/3)^2<3^2=9,
所以k1k2<9,即k1k2≤8,
当k1k2=8时,取b=0,c=2√2-3即可
已知函数F(x)=ax^3+bx^2+cx(
已知函数f(x)=ax^3+bx^2+cx+d,有三个零点分别是0,1,2 f(x)在(-∞,x1]单增 [x1,x2]单减 [x2,+∞)单增 求x1^2+x2^2 __________错了.不是f(x)=ax^3+bx^2+cx+d 是f(x)=x^3+bx^2+cx+d
F(x)是奇函数f(x)=(ax2+bx+1)%(cx+d)x>0F(X)最小值为2根号2f(1)=3求f(X)
设函数f(x)=1/3ax^3+bx^2+cx(a
f(x)=1/3ax^3+bx^2+cx(a
(2x-1)^5=ax^5+bx^4+cx^3+dx^2+ex+f
设三次函数f(x)=ax^3+bx^2+cx+d(a
设f(x)=ax^3+bx^2+cx+d,(a
设三次函数f(x)=ax^3+bx^2+cx+d(a
设f(x)=ax^3+bx^2+cx+d,(a
像f(x)=aX^3+bX^2+cX+d这种方程怎样化简呢
设函数f(x)=x^3+bx^2+cx(x∈R),已知g(x)=f(x)-f `(x)是奇函数.求b,c.
已知等式(x-3)*(x-3)*(x-3)*(x-3)*(x-3)*=ax*ax*ax*ax*ax*+bx*bx*bx*bx*+cx*cx*cx+dx*dx*+ex+f ,求a-b+c-d+e
已知函数f(x)=x^3+bx^2+cx+d在x=2你还没有我做得多
设函数f(x)=x^3+bx^2+cx.已知g(x)=f(x)-f'(x)是奇函数,求b,c值
设函数f(x)=x^3+bx^2+cx 已知g(x)=f(x)-f'(x)是奇函数 求b、c的值急救!
已知关于x的函数f(x)=-1/3x^3+bx^2+cx+bc,其导函数为f'(x).令g(x)=lf'(x)l,已知函数f(x)=-1/3x^3+bx^2+cx+bc,其导函数为f'(x).令g(x)=|f'(x)|,记函数g(x)在区间[-1,1]的最大值为M.(1)如果函数f(x)在x=1处有极限值-4/3,
已知f(x)=ax^5+bx^3-cx-6且f(-2)=8,求f(2)