化简 (21 15:57:26)(sin4α)/ [4sin2(π/4 +α)tan(π/4 -α)]=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:17:35
化简 (21 15:57:26)(sin4α)/ [4sin2(π/4 +α)tan(π/4 -α)]=
x){3 #CCS+Ss+#3{:3Lm|S_!1o7Q$t6IEXMKg~ TҴM/rtB 10 vIp[vGCΆ'>h{(V\Z`d W_ <P:.ȃDJGӵl!V A:o=Y<;h؀9 SЅ_,41'q(@DVЂX>,@4 a6zzz؂i늗+ntOha:|)XAۈb hDUq(QgS7<=Yħ3_Qx aӈ-6Mbv$@'

化简 (21 15:57:26)(sin4α)/ [4sin2(π/4 +α)tan(π/4 -α)]=
化简 (21 15:57:26)
(sin4α)/ [4sin2(π/4 +α)tan(π/4 -α)]=

化简 (21 15:57:26)(sin4α)/ [4sin2(π/4 +α)tan(π/4 -α)]=
sin(π/4+α)=cos[π/2-(π/4+α)]=cos(π/4-α)
tan(π/4-α)=sin(π/4-α)/cos(π/4-α)
所以分母=4cos²(π/4-α)*sin(π/4-α)/cos(π/4-α)
=4sin(π/4-α)cos(π/4-α)
=2sin[2(π/4-α)]
=2sin(π/2-2α)
=2cos2α
分子=sin4α=2sin2αcos2α
所以原式=sin2α

tan(π/4 -α)=cot[π/2-(π/4 -α)]=cot(π/4 +α)
所以原式=(sin4α)/ [4sin2(π/4 +α)cot(π/4 +α)]
=(sin4α)/ [4sin2(π/4 +α) *cos(π/4 +α)/sin(π/4 +α)]
=(sin4α)/ [4sin(π/4 +α) *cos(π/4 +α)]<...

全部展开

tan(π/4 -α)=cot[π/2-(π/4 -α)]=cot(π/4 +α)
所以原式=(sin4α)/ [4sin2(π/4 +α)cot(π/4 +α)]
=(sin4α)/ [4sin2(π/4 +α) *cos(π/4 +α)/sin(π/4 +α)]
=(sin4α)/ [4sin(π/4 +α) *cos(π/4 +α)]
=(sin4α)/ [2sin(π/2 +2α)]
=(sin4α)/ (2cos2α)
=2sin2αcos2α/(2cos2α)
=sin2α
分数给我吧?O(∩_∩)O谢谢!

收起