求过原点且与y=1和圆(x+2)^2+(y+1)^2=1相切的圆的方程.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:43:23
求过原点且与y=1和圆(x+2)^2+(y+1)^2=1相切的圆的方程.
xRN@aצҲ-| I V["#_LSW[6Ms=hT0+ +}TXnw+eؽٮnŴ* 9IjRA:6j[4Ì*IigՅgQ-=,hM0zWЙ^ =B㢿0xWkL#tΟ( W yl^] YY1 ̴_;!bޫ;jAk':Mh/ K*]lDE2]S aOX{սB{3 #A2)~=dgB._*tj~[Uup O"TF`$ |<>Bt bs[ i;eIz+2

求过原点且与y=1和圆(x+2)^2+(y+1)^2=1相切的圆的方程.
求过原点且与y=1和圆(x+2)^2+(y+1)^2=1相切的圆的方程.

求过原点且与y=1和圆(x+2)^2+(y+1)^2=1相切的圆的方程.
与直线相切,就是圆心到直线的距离等于圆的半径.
两圆相切,就是两个圆的圆心距等于两个圆的半径的和.
设所求的圆的方程为(x-a)^2+(y-b)^2=r^2.其中(a,b)为圆心坐标,r为圆的半径.而圆过原点.可列出方程组
(b-1)^2=r^2,
(a+2)^2+(b+1)^2=(1+r)^2,
a^2+b^2=r^2.
解出圆的方程!
这个你就自己解吧!有两个解!

设所求的园的方程为(x-a)^2+(y-b)^2=r^2
由题意有:
1 a^2+b^2=r^2 (过原点)
2 1-b=r (与y=1 相切)
3 (-2-a)^2+(-1-b)^2=(1+r)^2 (与已知园相切)
解上述3个方程得: