lim(n→0)1+a+a^2+...+a^n/1+b+b^2+...b^n和lim(n→0)【1/(1+3)+1/(3+5)+...1/[(2n-1)+(2n+1)]】求两个极限的解答,里面n都是趋向于无穷,不是零,第一个极限a、b的绝对值都小于1

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 02:07:12
lim(n→0)1+a+a^2+...+a^n/1+b+b^2+...b^n和lim(n→0)【1/(1+3)+1/(3+5)+...1/[(2n-1)+(2n+1)]】求两个极限的解答,里面n都是趋向于无穷,不是零,第一个极限a、b的绝对值都小于1
xQN@4#S4qQ.I3 mE""BD|E&+@gJW-5q=sJ)ymu=LFGF R"y*0RjУX7(!QȹSXE0EeWy.ΩaLnvd%q_Y3Phܰ߆9<ܩ~xLCCiAv^> -6 a֎xR5E5UcT!`$a3yj_̇ ?JL0J,;mW*Y 0 GH“$hBRڰ̾?t-_ȱn Z4_B)vuNXKʬd4ga#U,]YȽ]A

lim(n→0)1+a+a^2+...+a^n/1+b+b^2+...b^n和lim(n→0)【1/(1+3)+1/(3+5)+...1/[(2n-1)+(2n+1)]】求两个极限的解答,里面n都是趋向于无穷,不是零,第一个极限a、b的绝对值都小于1
lim(n→0)1+a+a^2+...+a^n/1+b+b^2+...b^n和lim(n→0)【1/(1+3)+1/(3+5)+...1/[(2n-1)+(2n+1)]】
求两个极限的解答,
里面n都是趋向于无穷,不是零,第一个极限a、b的绝对值都小于1

lim(n→0)1+a+a^2+...+a^n/1+b+b^2+...b^n和lim(n→0)【1/(1+3)+1/(3+5)+...1/[(2n-1)+(2n+1)]】求两个极限的解答,里面n都是趋向于无穷,不是零,第一个极限a、b的绝对值都小于1
1.|a|>|b|时趋于无穷; |a|

1. |a|>|b|时趋于正负无穷; |a|<|b|时趋于0; a=b时趋于1;a=-b时极限不存在
2. [1/(1+3)+1/(3+5)+...1/[(2n-1)+(2n+1)]=1/4+1/8+...1/4n=1/4[1+1/2+...1/n]
当n趋于无穷时,因为1+1/2+1/3+...1/n+...趋于无穷,所以原式趋于无穷

第一个把等比数列整理出来2. 1/2(1-1/3…曰掉OK