在数列{an}中,a1=1,且4a (n+1)-ana(n+1)+2an=9【括号内均为下标】,通过计算a2,a3,a4,猜想an=________

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:33:43
在数列{an}中,a1=1,且4a (n+1)-ana(n+1)+2an=9【括号内均为下标】,通过计算a2,a3,a4,猜想an=________
xSQo0+-QbYvHIBGT)cm1m:fR֍ s↥x]$;ߝF]%gf<=9 O?0a o,E~ɷՎFݿal ؠ32N DvA&w,°B8q! J29&vW2Ȣdrv ]fÞ>w:"ig_}J>=Z4$ta1uT)a G+r,YǠ \ _5oBO!et\ +"EoF ivRWw;*uG^eb0"Qoᎄ?opQu0Ycw}/eQ<ܪKiGUSn TWa*jX_Գ

在数列{an}中,a1=1,且4a (n+1)-ana(n+1)+2an=9【括号内均为下标】,通过计算a2,a3,a4,猜想an=________
在数列{an}中,a1=1,且4a (n+1)-ana(n+1)+2an=9【括号内均为下标】,通过计算a2,a3,a4,猜想an=________

在数列{an}中,a1=1,且4a (n+1)-ana(n+1)+2an=9【括号内均为下标】,通过计算a2,a3,a4,猜想an=________
an= (6n-5)/(2n-1)
4a2-a2+2=9
a2=7/3
4a3-(7/3)a3+14/3=9
a3=13/5
4a4-(13/5)a4+26/5=9
a4=19/7
……
an= (6n-5)/(2n-1)
证明:对n进行归纳,设第n项成立
下面检验n+1项:
即看看4a(n+1)-anan+1+2an是否为9

因为:an=(6n-5)/(2n-1)
所以:a(n+1)=(6n+1)/(2n+1)
4a(n+1)-anan+1+2an
=4(6n+1)/(2n+1)-(6n-5)(6n+1)/(2n+1)(2n-1)+2(6n-5)/(2n-1)
=[4(6n+1)(2n-1)+2(6n-5)(2n+1)]/(2n+1)(2n-1)-(6n-5)(6n+1)/(2n+1)(2n-1)
=[4(6n+1)(2n-1)-(6n-5)(2n-1)]/(2n+1)(2n-1)
=[(2n-1)(24n+4-6n+5)]/(2n+1)(2n-1)
=(2n-1)(18n-9)/(2n+1)(2n-1)=9(2n-1)(2n+1)/(2n+1)(2n-1)
=9
证毕!

a1=1/1
a2=7/3
a3=13/5
a4=19/7
观察到1、7、13、19为等差数列{6n-5}
1、3、5、7为等差数列{2n-1}
an=(6n-5)/(2n-1)