设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:22:12
设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)
xUr@Q$@WG!9pr%&6%^!U('E8bkF/{FAHUrJqٚ~3s}agN mѓzTUiʬ{7uX XpV'c `n5~>OˤR/۽$FTn4E d?JK0tҧ=Tp+qv/r܂$N0"0{n=!*nC*79)سTrF6&; _%*?R+q~*y7ulu,rx`fP{;ynFi˚԰&8~$DO⪢V!*Z0yd5 / 7Jǃ PGIe9MUh\#ӕ;m-+a 27Wh l*?~n(:BuoS j߁tΊ[dȵҎERmZ*tʀpEǘh'CWVw}E}d^dRH'?̽gBӂBDAM$hi(;.@]$)PߔĤ~d &~%F03;p6D~|՘ n䔼Jt#Мh{-; R.r8imb;

设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)
设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)

设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)
1、令x=y=0,
f(0+0)=f(0)+f(0),
即f(0)=2f(0)得f(0)=0
2、令x=-y,即y=-x代入得
f(x-x)=f(x)+f(-x),
即f(x)=f(x)+f(-x)移项得
f(-x)=-f(x)为奇函数
3、因为f(1/3)=1,令x=y=1/3代入得
f(1/3+1/3)=f(1/3)+f(1/3)=2,即f(2/3)=2 (用来替代不等式中的2)
即所求不等式为发f(x)+f(2+x)<f(2/3)……①
设x1、x2大于0,且0<x1<x2,则x2/x1>0,所以f(x2/x1)<0
所以f(x2)-f(x1)=f[(x1*(x1/x2)]-f(x1)=f(x1)+f(x2/x1)-f(x1)=f(x2/x1)<0
即f(x1)>f(x2),所以f(x)在(0,+∞)上为减函数
再根据f(x+y)=f(x)+f(y)的逆应用,
把f(x)+f(2+x)转化为f(x+x+2)=f(2x+2)
所以f(x)+f(2+x)<2就可以转换成f(2x+2)<f(2/3)
根据单调性把①中的f脱掉,得2x+2>2/3且x>0,2+x>0(因为x的定义域要落在
x>0才符合题意)
综上解得(0,+∞).

(1)设f(x)=f(y)=0 则 f(0)+f(0)=f(0)
所以 f(0)=0

1.f(0+0)=f(0)+f(0)=2f(0),得f(0)=0
2.f(x-x)=f(x)+f(-x)=0,得f(x)=-f(x),且定义域为R,所以是奇函数
3.设x1=m+n,x2=m,且m,n>0所以有f(x1)-f(x2)=f(m+n)-f(m)=f(n)<0,所以f(x)在(0,+无穷大)递减,又f(x)是奇函数,所以f(x)在R上是减函数。
f(2/3)=f(...

全部展开

1.f(0+0)=f(0)+f(0)=2f(0),得f(0)=0
2.f(x-x)=f(x)+f(-x)=0,得f(x)=-f(x),且定义域为R,所以是奇函数
3.设x1=m+n,x2=m,且m,n>0所以有f(x1)-f(x2)=f(m+n)-f(m)=f(n)<0,所以f(x)在(0,+无穷大)递减,又f(x)是奇函数,所以f(x)在R上是减函数。
f(2/3)=f(1/3+1/3)=f(1/3)+f(1/3)=2f(1/3)=2
又f(x)+f(2+x)=f(x+2+x)=f(2x+2)
所以有2x+2>2/3,由此可解得x的取值范围,x>-2/3

收起

1.f(0+0)=f(0)+f(0)
所以f(0)=0

设函数Y=f(x)是定义域在R+上的函数,并且满足下面三个条件(1)对任意正数X.Y,都有f(xy)=f(x)+f(y);(2)当x>1时,f(x) 设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y)f(三分之一)=1 且当x>0时 f(x) 设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x) 设函数y=f(x)的定义域为R,并且满足f(x-y)=f(x)-f(y),f(2)=1 (1)求f设函数y=f(x)的定义域为R,并且满足f(x-y)=f(x)-f(y),f(2)=1(1)求f(0)的值;(2)判断函数的奇偶性 设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)>01.求f(0)值2.判断函数奇偶性3.如果f(x)+f(2+x)<2,求x的取值范围 设函数y=f(x)是定义在R上的减函数,并且满足f(xy)=f(x)+f(y),f(3分之1)=1,求f(1)?如果f(x)+f(2-x) 设函数f x是定义域为R+,并且对定义域内的任意X,Y都满足f(xy)=f(x)+f(y),且当x>1f(x) 设函数y=f(X)是定义在R+上的函数,并且满足下面三个条件:(1)对整数x、y都有f(xy)=f(x)+f(y)...设函数y=f(X)是定义在R+上的函数,并且满足下面三个条件:(1)对整数x、y都有f(xy)=f(x)+f(y);(2)当x> 设函数y=f(x)是定义域在R^+上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1,求f(1)的值如果f(x)+f(2-x)<2,求x的取值范围 设函数y=f(x)是定义域在R^+上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1,求f(1)的值如果f(x)+f(2-x)<2,求x的取值范围 设函数y=f(x)是定义域在R上的减函数,并且满足发f(xy)=f(x)+f(y),f(1/3)=1,1.求f(1)的值       2.如果f(x)+f(2-x) 设函数y=f(x)是定义域为R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1 ①判断函数的奇偶性②如果f(x)+f(2+x)<2求x的取值范围 求详解 设函数y=f(x)是定义在R上的减函数,并且满足f(x+y)=f(x)+f(y),f(1/2)=1 求不等式f(4x)+f(2-x) 设函数y=f(x)是定义域为R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)>01.求f(0)值2.判断函数奇偶性3.如果f(x)+f(2+x)<2,求x的取值范围 1.已知函数f(x),当x,y属于r时,恒有f(x+y)-f(x)+f(Y),(1)求证f(x)是奇函数,(2)如果x属于R,f(x)<0,并且f(1)=-1/2,试求f(x)在区间[-2,6]上的最值2.设函数Y=f(x)是定义在R上的减函数,并且满足f(xy)=f 设函数y=f(x)是定义在R+上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1 如果f(x)+f(2-x) 设函数y=f(x)是定义在R*上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1,f(x)+f(2-x) 设函数y=f(x)是定义在R 上的函数,并且满足下面三个条件:1.对正数x、y都有f(xy)=f(x)+f(y);2.当x>1时,f(x)