lim(n-∞)﹙x²/x²-1﹚lim(n-∞)[x²/x²-1﹚]^x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 11:19:38
lim(n-∞)﹙x²/x²-1﹚lim(n-∞)[x²/x²-1﹚]^x
xRJP &$I!'RVP t!J}$*)1u_Nn…s9sobzvf)nipFF|V(AA`Jy?UC9RRyTPzyҽx;5ߢb*d@axٔ ˆzSbSU$"yCRĎL UuoZ]:VI96J{QãcT =ڈlT2;0kO,Nj'DJiYkrc55 RWҡ%j^V/cأUV@@ "3:&/nk;\u{(d> 3x#D$yt_ B:[׋?k"

lim(n-∞)﹙x²/x²-1﹚lim(n-∞)[x²/x²-1﹚]^x
lim(n-∞)﹙x²/x²-1﹚
lim(n-∞)[x²/x²-1﹚]^x

lim(n-∞)﹙x²/x²-1﹚lim(n-∞)[x²/x²-1﹚]^x
lim[x²/x²-1﹚]^x
=lim[1+1/(x^2-1)]^x
=lim[1+1/(x^2-1)]^{(x^2-1)]*[x^2/(x^2-1)]}
=lim[1+1/(x^2-1)]^(x^2-1)]
=e(1)、证明:
∴A1B1=(-1,1,0) A1A=(0,0,√2) C1D=(1/2,1/2,0)
∴A1B1·C1D=0 A1A·C1D=0
∴A1B1⊥C1D A1A⊥C1D
又∵A1B1∈平面AA1B1B 且A1A∈平面AA1B1B 且A1A与A1B1不平行
∴C1D⊥平面AA1B1B
(2)、∵AB1=(-1,1,-√2)
∴AB1·C1D=0
∴AB1⊥C1D
∴只要AB1⊥DF时,就会有AB1⊥平面C1DF
又∵DF=(-1/2,1/2,z)
∴AB1·DF=1-z√2
∴当z=1/√2时,AB1⊥DF
即:F点坐标为(0,1,1/√2) 即BB1中点时,会使得AB1⊥平面C1DF

???

lim[x²/x²-1﹚]^x
=lim[1+1/(x^2-1)]^x
=lim[1+1/(x^2-1)]^{(x^2-1)]*[x^2/(x^2-1)]}
=lim[1+1/(x^2-1)]^(x^2-1)]
=e