设f(x)=sinx,x∈[0,π/2) f(x)= 1,x∈[π/2,2].则f(x)dx在0到2上的积分为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 04:01:41
设f(x)=sinx,x∈[0,π/2) f(x)= 1,x∈[π/2,2].则f(x)dx在0到2上的积分为
x){n_Fmqf^Nţh Ft*% ! AX3A)O0xڱɎZ/_Ɏ]6IE40UΆV}7~G5 i*,H AT0J+M/Ն)(06Ax~qAb#

设f(x)=sinx,x∈[0,π/2) f(x)= 1,x∈[π/2,2].则f(x)dx在0到2上的积分为
设f(x)=sinx,x∈[0,π/2) f(x)= 1,x∈[π/2,2].则f(x)dx在0到2上的积分为

设f(x)=sinx,x∈[0,π/2) f(x)= 1,x∈[π/2,2].则f(x)dx在0到2上的积分为
原式=∫(0,π/2) sinxdx+∫(π/2,2) 1*dx
=(0,π/2)[-cosx]+(π/2,2)[x]
=1+2-π/2
=3-π/2