已知a,b,c均为正数 证明a^2+b^2+c^2+(1/a+1/b+1/c)^2大于等于六倍根号三并确定a,b,c为何值时等号成立

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:41:50
已知a,b,c均为正数 证明a^2+b^2+c^2+(1/a+1/b+1/c)^2大于等于六倍根号三并确定a,b,c为何值时等号成立
xŐJ@_e M@(yL% DhѨM\ U҅䢋4̜>ݹ0.|Lnzpw*ʵL('DN#ֵ PZ2E9ӻ

已知a,b,c均为正数 证明a^2+b^2+c^2+(1/a+1/b+1/c)^2大于等于六倍根号三并确定a,b,c为何值时等号成立
已知a,b,c均为正数 证明a^2+b^2+c^2+(1/a+1/b+1/c)^2大于等于六倍根号三
并确定a,b,c为何值时等号成立

已知a,b,c均为正数 证明a^2+b^2+c^2+(1/a+1/b+1/c)^2大于等于六倍根号三并确定a,b,c为何值时等号成立
由于a,b,c是轮换对称的,所以上式取得最小值时,a,b,c必然相等 a = b = c
于是取最小值时,原式可化简为 3*a^2 + (3/a)^2 = 3*a^2 + 9/(a^2) >= 2 根号( 3*9) = 6根号3