在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/04 03:13:46
在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值
在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值
在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值
a+c=2b
2RsinA+2RsinC=4RsinB
sinA+sinC=2sin(A+C)
2sin(A+C)/2cos(A-C)/2=4sin(A+C)/2cos(A+C)/2
cos(A-C)/2=2cos(A+C)/2
sqrt(3)/2=2sinB/2
sinB=sqrt(3)/4
【sqrt(3)表示根号3】
一道高中数学题 在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值
∵a+c=2b,∴b=(a+c)/2,故由正弦定理得:
sinB=(1/2)(sinA+sinC)=sin[(A+C)/2]cos[(A-C)/2]=sin[(A+C)/2]cos30⁰=(√3/2)sin[(A+C)/2]......(1)
又sinB=sin[180̾...
全部展开
一道高中数学题 在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值
∵a+c=2b,∴b=(a+c)/2,故由正弦定理得:
sinB=(1/2)(sinA+sinC)=sin[(A+C)/2]cos[(A-C)/2]=sin[(A+C)/2]cos30⁰=(√3/2)sin[(A+C)/2]......(1)
又sinB=sin[180⁰-(A+C)]=sin(A+C)=2sin[(A+C)/2]cos[(A+C)/2].............(2)
由(1)(2)得 (√3/2)sin[(A+C)/2]=2sin[(A+C)/2]cos[(A+C)/2
∴sin[(A+C)/2]{2cos[(A+C)/2]-(√3/2)]}=0
∵sin[(A+C)/2]≠0,∴必有 2cos[(A+C)/2]-√3/2=0
∴cos[(A+C)/2]=√3/4
由于cos[(A+C)/2]=cos[(180º-B)/2]=cos(90º-B/2)=sin(B/2)=√3/4
∴sinB=2sin(B/2)COS(B/2)=2×(√3/4)×√[1-(√3/4)²]=(√39)/8
收起