在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/04 03:13:46
在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值
xTj@~A!pT+5XzB{4>饇&՜JAq4i`rHC N%=Ml Ju(a5373;.0^{y|rXg\b~S ;/GΨ](3?4} ̚~0A ;&\U$ĞN7=mb\-Ky{RzJLDm(,, ];Q`53o^qm# b3'{ HXX?ʥ`AT eP nX+v;a31y/A($STH<(t'eVAaBpI[0)"yx5y.֐g:[-BEQ #)ʢCZ0+ϨQ3#VYЛ(UfȞve!hC nLU,=|֜8HVg!8TM_t=$zYYe\R%oHyqZjo3 4

在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值
在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值

在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值
a+c=2b
2RsinA+2RsinC=4RsinB
sinA+sinC=2sin(A+C)
2sin(A+C)/2cos(A-C)/2=4sin(A+C)/2cos(A+C)/2
cos(A-C)/2=2cos(A+C)/2
sqrt(3)/2=2sinB/2
sinB=sqrt(3)/4
【sqrt(3)表示根号3】

一道高中数学题 在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值
∵a+c=2b,∴b=(a+c)/2,故由正弦定理得:
sinB=(1/2)(sinA+sinC)=sin[(A+C)/2]cos[(A-C)/2]=sin[(A+C)/2]cos30⁰=(√3/2)sin[(A+C)/2]......(1)
又sinB=sin[180̾...

全部展开

一道高中数学题 在三角形ABC中,设a+c=2b,A-C=60度 求sinB的值
∵a+c=2b,∴b=(a+c)/2,故由正弦定理得:
sinB=(1/2)(sinA+sinC)=sin[(A+C)/2]cos[(A-C)/2]=sin[(A+C)/2]cos30⁰=(√3/2)sin[(A+C)/2]......(1)
又sinB=sin[180⁰-(A+C)]=sin(A+C)=2sin[(A+C)/2]cos[(A+C)/2].............(2)
由(1)(2)得 (√3/2)sin[(A+C)/2]=2sin[(A+C)/2]cos[(A+C)/2
∴sin[(A+C)/2]{2cos[(A+C)/2]-(√3/2)]}=0
∵sin[(A+C)/2]≠0,∴必有 2cos[(A+C)/2]-√3/2=0
∴cos[(A+C)/2]=√3/4
由于cos[(A+C)/2]=cos[(180º-B)/2]=cos(90º-B/2)=sin(B/2)=√3/4
∴sinB=2sin(B/2)COS(B/2)=2×(√3/4)×√[1-(√3/4)²]=(√39)/8

收起