a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项和sna1=1,an+1=2an+2^n 设bn=an/2^n-1 1.证明bn是等差数列 2.求an前n项和sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:12:27
a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项和sna1=1,an+1=2an+2^n 设bn=an/2^n-1 1.证明bn是等差数列 2.求an前n项和sn
xU[OA+q/lD:  $?`BјXHDA@@/mE#ǘ_Z&6ι||gΙ9ad 0+]0} 㢊7@D%{'8]>BnPh_cUV Vjz G9Vk| )P;Л=J-X\r@mןwM+]() A\Hѹlm9K(dMEa@S308D1$ʓ@UU"T+V+F[pNJ S+9dϩZ|\?WOAQVCWiPGslT`5 9 .(dw?>{sƯPI/ 9gpP|΢{S%)x ֔,v{+4Af12(\ʹXieƚ8~n^JvMe52ɸf|INm*MjvJ=]R̻-.Ee q9$͈<#ݣ@<.V*2rs#/62UL(&"E;V'gp3K.!]rrţq(`2wBSM$e\I.\2Wk+@M<ɮzOzw^FoMn10'~n,黎x9R=[='+

a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项和sna1=1,an+1=2an+2^n 设bn=an/2^n-1 1.证明bn是等差数列 2.求an前n项和sn
a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项和sn
a1=1,an+1=2an+2^n 设bn=an/2^n-1 1.证明bn是等差数列 2.求an前n项和sn

a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项和sna1=1,an+1=2an+2^n 设bn=an/2^n-1 1.证明bn是等差数列 2.求an前n项和sn
bn = an/2^(n-1)
b = a/2^(n-2)
bn - b
= an/2^(n-1) - a/2^(n-2)
= (an - 2a )/2^(n-1)
把 已知条件 a = 2an+2^n 即 an = 2a + 2^(n-1) 代入上式
bn - b
= 2^(n-1)/2^(n-1)
= 1
因此 bn 是等差数列
b1 = a1/2^(1-1) = 1/1 = 1
bn = n
--------------------
an/2^(n-1) = n
所以
an = n * 2^(n-1)
-------------------------
Sn = a1 + a2 + a3 + …… + a + an
= 1 + 2*2 + 3*2^2 + …… + (n-1)*2^(n-2) + n * 2^(n-1)
2Sn = 2 + 2*2^2 + 3*2^3 + …… + (n-1)*2^(n-1) + n * 2^n
两式子相减, 把 2的乘方相同的相合并在一起
2Sn - Sn = Sn
= -1 + (1-2)*2 + (2-3)*2^2 + (3-4)*2^3 + …… [(n-1) -n]*2^(n-1) + n*2^n
= n*2^n - [ 1 + 2 + 2^2 + …… 2^(n-1)]
= n*2^n - 1*(2^n -1)/(2-1)
= n * 2^n - 2^n + 1
= (n-1)*2^n + 1

解: (1)
a(n+1)=2an+2^n
a(n+1)/2^n=2an/2^n+1
a(n+1)/2^n=an/2^(n-1)+1
由于 bn=an/2^(n-1)
则b(n+1)=a(n+1)/2^n
则: b(n+1)=bn+1
b(n+1)-bn=1
则{bn}是等差数列
(2...

全部展开

解: (1)
a(n+1)=2an+2^n
a(n+1)/2^n=2an/2^n+1
a(n+1)/2^n=an/2^(n-1)+1
由于 bn=an/2^(n-1)
则b(n+1)=a(n+1)/2^n
则: b(n+1)=bn+1
b(n+1)-bn=1
则{bn}是等差数列
(2)由于b1=a1/2^0
=1
则: bn=b1+(n-1)*1
=n
则: an/2^(n-1)=n
an=n*2^(n-1)
则:Sn=a1+a2+a3+...+an
=1*2^0+2*2^1+3*2^2+...+n*2^(n-1)
=(n+1)*2^n-1

收起

a1 = 1
S1 = a1 = 1
以 n = 1 代入一楼计算结果, S1 = (1+1)*2^1 -1 = 3 , 错误!
以 n = 1 2 3 代入二楼结果, 正确!

设数列{an}中,a1=2,an+1=an+n+1,则通项an=? 设a1,a2,...,an都是正数,证明不等式(a1+a2+...+an)[1/(a1)+1/(a2)+...+1/(an)]>=n^2 设b>0,数列an满足a1=b,an=nban-1/an-1+n-1(n≥2)求数列an通向公式. 设b>0,数列an满足a1=b,an=nban-1/an-1+n-1(n≥2)求数列an通向公式 设数列AN满足A1等于1,3(A1+a2+~+AN)=(n+2)an,求通向公式 数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an 设数列{an},a1=2,a(n+1)=an+In·(1+1/n),求an 设数列﹛an﹜中,a1+4,an=3a(n-1)+2n-1,求通项an 已知数列{an}满足:a1=3,an+1=(3an-2)/an ,n∈N*.(Ⅰ)证明数列{(an-1)/an-2已知数列{an}满足:a1=3,an+1=(3an-2)/an ,n∈N*.(1)证明数列{(an-1)/an-2 }为等比数列,并求数列{an}的通项公式;(2)设设b 设数列{an}满足a1=2,an+1=an+1/an(n=1,2,3.),证明:an>根号下(2n+1).急用 an=a1+(n-1)d 和Sn=n(a1+an)/2中an是什么意思? an=a1+(n-1)d 和Sn=n(a1+an)/2中an是什么 数列{an}满足a1=1 an+1=2n+1an/an+2n 数列{an},a1=1,an+1=2an-n^2+3n,求{an}. 数列{an}中,a1=1,an+1/an=n/n+2,求an 设数列{an}中,若an+1 =an+ an+2 (n∈N*),则称数列{an}为“凸数列” .设数列{an}为“凸数列”求第二问证明设数列{an}中,若an+1 =an+ an+2 (n∈N*),则称数列{an}为“凸数列” .设数列{an}为“凸数列”,若a1 =1, 设b>0,数列{An}满足A1=b,An=nbA(n-1)/A(n-1)+2n-2(n>=2).(1)求数列{An}的通项公式;(2)证明:对于一切正整数n,An 设数列{an}满足a1=2,an+1=an+1/an,(n∈N).令bn=an/根号下n,判断bn与bn+1的大小a1=2a(n+1)=an+(1/an)a(n+1) > anb(n+1)-bn = a(n+1)/ √(n+1) - an/√n> an/ √(n+1) - an/√n<0b(n+1) < bn