已知数列前n项和为Sn,首项为a1,且1,an,Sn为等差数列 (1)求数列{an}的通项公式(2)设Tn为数列{n/an}的前n项和,若对于一切n∈N*,总有Tn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:53:35
已知数列前n项和为Sn,首项为a1,且1,an,Sn为等差数列 (1)求数列{an}的通项公式(2)设Tn为数列{n/an}的前n项和,若对于一切n∈N*,总有Tn
xUn@SugR!O`P#}G !@C[%MQ[޴8gv6E,`DFs_޹sMu&>m&;"Ze>\*V:w[!'p!7TH9ٽ+:xxc>8 Der/Ì(.nq7MEg'$%>BU?Q;U#:qؽ6 q(vZ"WZz3 #v]~}h@*[: V ڻ4ҕ8JШ3͌uj# ksf|"?H:Fۼ(hUvd5t!\הpZftC)/18G%f[O;l(lKl]K{?Ÿ <lcG*8)؜T~޸f HĖ8(ɒvb >YhIq47 ڨ #|Jٶr3}mja(t0\/& c_s:a x

已知数列前n项和为Sn,首项为a1,且1,an,Sn为等差数列 (1)求数列{an}的通项公式(2)设Tn为数列{n/an}的前n项和,若对于一切n∈N*,总有Tn
已知数列前n项和为Sn,首项为a1,且1,an,Sn为等差数列 (1)求数列{an}的通项公式
(2)设Tn为数列{n/an}的前n项和,若对于一切n∈N*,总有Tn

已知数列前n项和为Sn,首项为a1,且1,an,Sn为等差数列 (1)求数列{an}的通项公式(2)设Tn为数列{n/an}的前n项和,若对于一切n∈N*,总有Tn
∵1,an,Sn为等差数列
∴2a1=1+S1=1+a1 2a2=1+S2=1+a1+a2
∴a1=1 a2=2
由2an=1+Sn 2a(n-1)= 1+S(n-1)得
2an-2a(n-1)=Sn-S(n-1)=an(n>1)
∴an=2a(n-1)(n>1) 即当n>1时an为以q=2为公比,a2=2为首项的等比数列
∴an=2*2^(n-2)=2(n-1)(n>1)
当n=1时 a1=1=2^(1-1)满足通项公式
∴an=2^(n-1)
(2) Tn=1+2/2+3/2²+……+(n-1)/2^(n-2)+n/2^(n-1)
1/2Tn= 1/2+2/2²+……+(n-1)/2^(n-1)+n/2^n
两式相减得1/2Tn=1+1/2+1/2²+……+1/2^(n-1)-n/2^n
=[1-(1/2)^n]/(1-1/2)-n/2^n
=2-1/2^(n-1)-n/2^n
∴Tn=4-1/2^(n-2)-n/2^(n-1)
当n>1时Tn-T(n-1)=1/2^(n-3)+(n-1)/2^(n-2)-1/2^(n-2)-n/2^(n-1)=1/2^(n-2)+(n-2)/2^(n-1)>0
∴Tn>T(n-1)即当n>1时,Tn为单调递增数列
当n=1时T1=1/a1=1/1=1∴对于一切n∈N*,Tn为单调递增数列,即Tn无最大值
∴而Tn<4恒成立
∴m-4/3>=4
∴m>=16/3 又∵m∈N*
∴m的最小值为6

(1)由条件,Sn=a1+…+an,Sn+1=2an,联立两式有an=a1+…+a(n-1)+1=
a1+…+a(n-2)+[a1+…+a(n-2)+1]+1=2[a1+…+a(n-2)+1]=2[2[a1+…+a(n-3)+1]]=…=2^(n-2)(a1+1)
又有a1=S1=2a1-1,所以a1=1,所以通项公式an=2^(n-1)
(2)由通项公式,Tn=1/1+2...

全部展开

(1)由条件,Sn=a1+…+an,Sn+1=2an,联立两式有an=a1+…+a(n-1)+1=
a1+…+a(n-2)+[a1+…+a(n-2)+1]+1=2[a1+…+a(n-2)+1]=2[2[a1+…+a(n-3)+1]]=…=2^(n-2)(a1+1)
又有a1=S1=2a1-1,所以a1=1,所以通项公式an=2^(n-1)
(2)由通项公式,Tn=1/1+2/2+3/2^2+…+n/2^(n-1)
1/2*Tn=1/2+2/2^2+3/2^3+…+n/2^n
两式相减得,1/2Tn=1+1/2+1/2^2+…+1/2^(n-1)-n/2^n=2-1/2^n-n/2^n=2-(n+1)/2^n,当n>0为整数时,(n+1)/2^n单减,因而2-(n+1)/2^n单增,n越大,Tn越大,若m-4/3要大于所有Tn,则只需大于最大的Tn即可,令n趋向无穷大,T无穷=2大于所有Tn,所以m-4/3=2,m的最小值为10/3

收起

已知数列an是等差数列,且a1不等于0,Sn为这个数列的前n项和,求limnan/Sn.limSn+Sn-1/Sn+Sn-1 数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式. 已知数列[AN]的前N项和为SN且A1=1SN=N²AN[N∈N'] 猜想SN的表达式并验证 设数列{an}的前n项和为Sn,已知首项a1=3,且Sn+1+Sn=2an+1,试求此数列的通项公式an及前n项和Sn 已知数列{an} 的前n项和为sn,且an=sn *s(n-1)a1=2/9 求证:{1/sn}为等差 已知数列{an}首项为a1=2,且a(n+1)=(1/2)(a1+a2+a3+a4+a5…+an)(n属于N*)记Sn为数列{an}前n项和,则Sn=? 已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列 已知数列的前n项和为Sn,且an=Sn·Sn-1(n>=2),a1=2/9,则a10= 已知数列{An}的前N项和为Sn且a1=1,Sn=n^2乘An.猜想Sn的表达式?有知道的吗? 已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn 已知数列{an}的首项a1=3,前n项和为sn,且sn+1=3sn+2n是判断数列{an+1}是否成等比数列,并求出数列{an}的通项公式 已知数列{an}的前n项和为Sn,a1=1/2,且Sn=n^2An-n(n-1),求an 已知数列{an}的首项a1=5,前n项和为sn,且sn+1=2sn+n+5(n∈N*) (1)证明数列{an+1}是等比数列. 已知数列{an}的首项a1=5,前n项和为sn,且sn+1=2sn+n+5(n∈N*) (1)证明数列{an+1}是等比数列.,求{an 已知数列{an}的首项a1=5,前n项和为sn,且sn+1=2sn+n+5(n∈N*) (1)证明数列{an+1}是等比数列.会的进 设数列an的前n项和为Sn.已知首项a1等于3,且S(n+1)+Sn=2a(n+1)求通项公式以及前n项和sn 已知各项均为正数的数列an 前N项和为Sn,首项为a1,且1/2,an,sn等差数列 求{an}通项公式已知各项均为正数的数列an 前N项和为Sn,首项为a1,且1/2,an,sn等差数列 求{an}通项公式 已知数列An中,其前n项和为Sn,A1=1,且An+1=2Sn,求An的通项公式和Sn