x趋向无穷时(x^2+x)^1/2-(x^2-x)1/2的极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 23:33:02
x趋向无穷时(x^2+x)^1/2-(x^2-x)1/2的极限
x)x鄉Ϧ/xr4*⌴+4 tAl M g_Μ`TO;lzt l} =OvΈ~1 Sj}6=r2s5*t i* 4"4٢.,z*HQ QkmUk b*];z6yv7{

x趋向无穷时(x^2+x)^1/2-(x^2-x)1/2的极限
x趋向无穷时(x^2+x)^1/2-(x^2-x)1/2的极限

x趋向无穷时(x^2+x)^1/2-(x^2-x)1/2的极限
分子分母同乘[√(x^2+x)+√(x^2-x)]有理化
lim(x->+∞) √(x^2+x)-√(x^2-x)
=lim(x->+∞) [(x^2+x)-(x^2-x)]/[√(x^2+x)+√(x^2-x)]
=lim(x->+∞) 2x/[√(x^2+x)+√(x^2-x)]
=lim(x->+∞) 2/[√(1+1/x)+√(1-1/x)] 【此时 x>0】
= 2/2
= 1
lim(x->-∞) √(x^2+x)-√(x^2-x)
=lim(x->-∞) [(x^2+x)-(x^2-x)]/[√(x^2+x)+√(x^2-x)]
=lim(x->-∞) 2x/[√(x^2+x)+√(x^2-x)]
=lim(x->-∞) 2/[-√(1+1/x)-√(1-1/x)] 【此时 x∞) √(x^2+x)-√(x^2-x) 不存在.