(log2(3)+log4(9)+……+log2^n(3^n))·log9(n次根号8)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 10:40:53
(log2(3)+log4(9)+……+log2^n(3^n))·log9(n次根号8)=
x)O7zNm ȶ5,"Q\H<(TБlg v>nI*ҧav6Tvb[$eE? 0P J>4-\6m @ |

(log2(3)+log4(9)+……+log2^n(3^n))·log9(n次根号8)=
(log2(3)+log4(9)+……+log2^n(3^n))·log9(n次根号8)=

(log2(3)+log4(9)+……+log2^n(3^n))·log9(n次根号8)=
log2^n(3^n)=log2(3)
log2(3)+log4(9)+……+log2^n(3^n)=nlog2(3)
log9(n次根号8)=1/nlog9(8)=1/n*3/2*log3(2)
(log2(3)+log4(9)+……+log2^n(3^n))·log9(n次根号8)
=nlog2(3)*1/n*3/2*log3(2)
=3/2