求提示【隐函数的求导】【1】求下列方程所确定的dy/dx[1] y^2-2xy+9=0 [2] x^3+y^3-3axy=0[3]xy=e^[x+y] [4]y=1-xe^y[2]2阶导数【1】x=θ[1-sinθ] y=θcosθ[2]x=t^2 y=e^t[3]x=acost y=bsint[4]求曲线x^[2/3]+y^[2/3]=a^[2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 03:50:03
求提示【隐函数的求导】【1】求下列方程所确定的dy/dx[1] y^2-2xy+9=0   [2] x^3+y^3-3axy=0[3]xy=e^[x+y]    [4]y=1-xe^y[2]2阶导数【1】x=θ[1-sinθ]     y=θcosθ[2]x=t^2  y=e^t[3]x=acost   y=bsint[4]求曲线x^[2/3]+y^[2/3]=a^[2
xVRF~Y\3/fL LoRb5! 1N$6qgHRc+]ɖdtv٣*MǕp57mƗއ[GQ*n?Epo뀖UN՘GLBYiq5˛"e'be& .s&v9}qrw;1H~bRM{l%h &>Wsw"/Q_D(=PtJqܓ0> )g҄7`Pkx#^]i-o!57Yϗ+^)qVb&^RR2bԀNP%IU $:O=R赮nDu^U]Z9W!ћet3^[ qg4m!0 .W~%:8ݾ܁b{MZ70 q7p7+"yP{F=Al/0A#6UK߂Glg6Ōxj*ޮu`|}[T̼|:nn 8Vh`*mO\tCa k ܘ9Ú%Qs=RTKqOD{r/a)6~6*>_l§tt6bԓp]N`"*OO'9G8kT

求提示【隐函数的求导】【1】求下列方程所确定的dy/dx[1] y^2-2xy+9=0 [2] x^3+y^3-3axy=0[3]xy=e^[x+y] [4]y=1-xe^y[2]2阶导数【1】x=θ[1-sinθ] y=θcosθ[2]x=t^2 y=e^t[3]x=acost y=bsint[4]求曲线x^[2/3]+y^[2/3]=a^[2
求提示【隐函数的求导】
【1】求下列方程所确定的dy/dx
[1] y^2-2xy+9=0 [2] x^3+y^3-3axy=0
[3]xy=e^[x+y] [4]y=1-xe^y
[2]2阶导数
【1】x=θ[1-sinθ] y=θcosθ
[2]x=t^2 y=e^t
[3]x=acost y=bsint
[4]求曲线x^[2/3]+y^[2/3]=a^[2/3]在【√2/4a √2/4a]处切线和法线.
法线方程和切线方程 ,,,,过程用不着详细。。。。。。给提示
多谢,,偶想不起来了。。。。

求提示【隐函数的求导】【1】求下列方程所确定的dy/dx[1] y^2-2xy+9=0 [2] x^3+y^3-3axy=0[3]xy=e^[x+y] [4]y=1-xe^y[2]2阶导数【1】x=θ[1-sinθ] y=θcosθ[2]x=t^2 y=e^t[3]x=acost y=bsint[4]求曲线x^[2/3]+y^[2/3]=a^[2
【1】求下列方程所确定的dy/dx
[1] y^2-2xy+9=0
2ydy-2ydx-2xdy=0
(y-x)dy=ydx
dy/dx=y/(y-x)
[2] x^3+y^3-3axy=0
3x^2dx+3y^2dy-3aydx-3axdy=0
(3y^2-ax)dy=(ay-x^2)dx
dy/dx=(ay-x^)/(3y^2-ax)
[3]xy=e^[x+y]
ydx+xdy=e^(x+y) *(dx+dy)
[x-e^(x+y)]dy=[e^(x+y)-y]dx
dy/dx=[e^(x+y)-y]/ [x-e^(x+y)]
[4]y=1-xe^y


dy=-e^ydx-xe^ydy
dy/dx= -e^y/(1+xe^y)

[2]2阶导数
【1】x=θ[1-sinθ] y=θcosθ
dx=(1-sinθ)dθ-θcosθdθ=(1-sinθ-θcosθ)dθ
dy=cosθdθ-θsinθdθ=(cosθ-θsinθ)dθ
[2]x=t^2 y=e^t
dx=2tdt dy=e^tdt
dy/dx=e^t/2t=y/(2√x)
d(dy/dx)/dx=[y'√x-1/2yx^(-1/2)]/2x
y‘=dy/dx 代入
[3]x=acost y=bsint

dx=-asintdt dy=bcost dt
dy/dx=asint/(bcost)=ya^2/(xb^2)
d(dy/dx)/dx=(y'xa^2-ya^2)/(xb)^2
将ydy/dx代入上式

[4]求曲线x^[2/3]+y^[2/3]=a^[2/3]在【√2/4a √2/4a]处切线和法线
切线斜率为曲线的一阶导数
切线斜率*法线斜率= -1
2/3*x^(-1/3)+2/3*y^(-1/3)y'=0
y'=(y/x)^(1/3)
在 [√2/4a √2/4a]处的y'=[(√2/4a)/(√2/4a)]=1
切线解析式:y=x
法线解析式:y=-x+√2/2a

求隐函数的导数,我觉得书上的公式没啥用,直接把y看成x是函数,即y=y(x),因此像y^3之类的东西都可以看成x的复合函数,利用复合函数求导法则在等式两边同时对x求导数即可。例如第1题,两边对x求导数得2yy'-2y-2xy'=0,y'=y/(y-x)。
求参数方程x=f(t),y=g(t)的二阶导数,书上有公式d^2y/dx^2=[g''(t)f'(t)-g'(t)f''(t)]/[f‘...

全部展开

求隐函数的导数,我觉得书上的公式没啥用,直接把y看成x是函数,即y=y(x),因此像y^3之类的东西都可以看成x的复合函数,利用复合函数求导法则在等式两边同时对x求导数即可。例如第1题,两边对x求导数得2yy'-2y-2xy'=0,y'=y/(y-x)。
求参数方程x=f(t),y=g(t)的二阶导数,书上有公式d^2y/dx^2=[g''(t)f'(t)-g'(t)f''(t)]/[f‘(t)]^3。例如第2题f'(x)=2t,f''(t)=2,g'(t)=g''(t)=e^t,因此d^2y/dx^2=(2te^t-2e^t)/8t^3=e^t*(t-1)/4t^3。
求切线和法线,求出曲线在该点的导数即可,导数表示该点处曲线切线的斜率,法线与切线垂直,带人直线的点斜式方程即可。

收起

求下列方程所确定的隐函数的微分2xy+y=1 高数求导习题2道1.求由下列参数方程所确定的函数y=f(x)的导数dy/dx(1)x=2t,y=t^2(2)x=te^-t,y=e^t2.利用对数求导法求下列各函数的导数(1)y=x^x请教上述习题详解,谢谢~ 求下列参数方程所确定的函数的导数 求提示【隐函数的求导】【1】求下列方程所确定的dy/dx[1] y^2-2xy+9=0 [2] x^3+y^3-3axy=0[3]xy=e^[x+y] [4]y=1-xe^y[2]2阶导数【1】x=θ[1-sinθ] y=θcosθ[2]x=t^2 y=e^t[3]x=acost y=bsint[4]求曲线x^[2/3]+y^[2/3]=a^[2 求方程siny=ln(x+y)所确定的隐函数Y的导数d^2y/dx^2隐函数的一次求导我会,可是二次求导怎么求? 下列方程确定y是x的函数,x^y=y^x,求dy/dx.(用隐函数的求导公式解答) 下列方程确定y是x的函数,x^y=y^x,求dy/dx.(用隐函数的求导公式解答) 如题 用对数求导法求下列函数的导数 用对数求导法求下列函数的导数 对数函数求导:求下列式子的dy/dx 隐函数求导的应用?对隐函数求导有哪些作用啊,比如对圆方程求导,求出来有什么作用,麻烦大家列举下, 微积分:求下列方程所确定的隐函数的二阶导数. 求由下列方程所确定的隐函数的导数 求由下列方程所确定的隐函数的二阶导数 求下列方程所确定的隐函数的导数y 求由下列方程所确定的隐函数的导数y 求下列方程所确定的隐函数y的导数.谢谢! 求由下列方程所确定的隐函数的导数 第三小题